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What is the Problem?

A sensor network is deployed

in an area of interest s
. . ‘ flnfrared Camera (,) ; ( )
Sensors have different security 2o Y3 }}é
classifications, or classified \ g e C et
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The Problem: How to provide e YR . Ty *
information to friends (troops Wiy :t @ a2

and coalition partners) while
minimizing the risk of
disclosing the presence and/or
location of the classified
sensors?
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Related Work

Statistics:

o Statistical Disclosure Control (SDC)

o Statistical Disclosure Limitation (SDL)
o Inference Control

Data Mining
o Privacy Preserving Data Mining (PPDM)
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‘ Related Work (cont.)
= ARL Collaborative Technology Alliance

o Advanced Decision Architectures
= Policy-governed information exchange

= Information and Sensor Capability Protection
o Coalition Operations

o Adversaries in the field, etc.
Q Risaﬂﬂaptive access control
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Proposed Approach

Vehicle

1\ _ - Inference
Heavy Vehicle : —

Tank
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A Simple Example

Reporting E3

o Ambiguous sources “S2” or
“83”

o Depending on history of
entities previously reported to
that soldier, the probability of
choosing “S2” is greater than
that of choosing “S3”

o Direct Bayesian inference from
the soldier side can be used to
estimate the presence of
sensor “S3”
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A More Complex Scenario

Selective Information Release for Source Protection

gine

(Snipper] (Platoon
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Proposed Solution

Build an Automatic

Source Protection Dledmp e X e
Network (ASPNet), a
Bayesian Network that
uses an ontology to
represent a hierarchy of
entities and features

Use the ASPNet for
detecting entities and
for assessing the risk of
disclosing sensor
information using
probabilistic inference
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ASPNet Specitication

Bayesian Network
o Automatically-detected sensor field information, hierarchy of equipment
(ontology), and technical database of features and known signatures
Contains three types of nodes:

o Entities

o Features
o Sensors

All nodes are binary (true or false)
Allowed Links:

o Entities — Parent Entities

o Entities — Features

o Features — Parent Features
o Features — Sensors
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‘ Equipment (Entity) Ontology
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ASPNet Example

Entities: Vehicle,
Heavy Vehicle,
Tank, Truck,
Light Vehicle,

o Motorcycle, Car

Features: Weight,
Heavy, Light

Sensors: W, P

|

L

ight_Vehicle
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Detecting an Entity

Gather information provided by the sensors
Feed that information to the Bayesian Network
Run an inference algorithm over the network

Pick the entity or entities with highest
probability
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Detection Example

Heavy

Heavy_Vehicle

Tank Truck
Sig3
s5

Sig4

% ihmce

Evidence

Weight

o W sensor measured

Gg feature Light

2 81 sensor measured
Car feature Sig1

s2

(snipper)  (Platoon Sig2

é
s6

Vibration
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Detection Example (continued)

& = Results of Inference:

o The entity is:
= Vehicle
= Light Vehicle
= Motorcycle

@

ot h KSCO 2010 - Marco Carvalho
I InNM C (mcarvalho@ihmc.us) 16



Source Protection Problem

In the previous example we could disclose to
the soldiers that entity is a Motorcycle, a
Light_Vehicle or simply a Vehicle

However, from a sensor protection
perspective, there is a different risk for each

one of these disclosures
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Risk of Disclosing a Sensor

Input: N (ASP Network)

Input: ¢ ity (0 b disclove) The risk of disclosing a sensor
F o Uf € N N TaFeaterely A BU) 2 ) will be defined as the probability
i}{{{}f P e Aty of having used the sensor for
for G 0 e 0 detecting the entity
How is this probability
f"..dnd%}(..' computed?
7 o |dentify all combinations of
S sensors that would allow to
e detect the entity
’én;.'““'"h“‘” o Divide the number of
wa O combinations including the
Vi sensor by the total number of
| end combinations
and
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‘ Risk Assessment
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Risk Assessment Example

[t 0O A, Entity to Disclose:
Weight Car

Sensor combinations
that allow the
detection of a Car:

o {W, s1}

o {W, s6}

o {P, s1}

o {P, s6}

Heavy_Vehicle

(Tan k) (Truck)

©
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Risk Assessment Example (continued)

Heavy
Weight
Heavy_Vehicle i
Vehicle
(Tank) (Truck) @\
Sigl
Sig3 s3
s5
Sig4
s4
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Sensor combinations:

o {W, s1},
T o {W, s6}
o {P, s1}
o {P, s6}
Riskofs1=2/4=
(Gripper)  (Platoon Sig2] 500/0

6

Vibration

Motorcycle

Car
N’
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First Evaluation

Hypothesis: Using more abstract ontology
classes reduces the risk

Evaluation:
o Obtained network from Army National Training Center

o For each child entity, C, assess the risk for each sensor
S — Risk(S | C)

o Then for the parent entity, P, assess the risk for each
sensor S — Risk(S | P)

0 Risk(S | C) — Risk(S | P)
o Average differences
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Second Evaluation Using Army
National Training Scenario

= Scenario: subset of a
R — : | military exercise

Lo mamciytriadil g SRS dataset from the Army

. . - =% National Training

Center

161 nodes

o 51 sensors
= 18 sensor types

o 110 entities

= Ontology has 63 classes
of entities
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‘ Risk Assessment

Sensor Entity
PO7 PO P P82 P8 4UZ 4U 4
SEH 14.29%  12.50% 8.00% | 33.33%  33.33% 18.18% 18.18%  16.98%
SQ3IR 14.29% |« 12.50% 33.33%  33.33% 36.36%  36.36% @ 22.64%
SEC 14.29% 12.50%  4.00% 0.00% 0.00% 18.18% 18.18% |« 11.32%
SNH 0.00%  0.00% 0.00% 0.00% 100.00% 100.00% = 52.83%
SW 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
SQ5 14.29% 12.50%  4.00% 0.00% 0.00% 9.09% 9.09%
SNU 100.00% « 87.50% 48.00% 0.00% 0.00% 0.00% 0.00%
SN8 0.00% 4.00% 0.00% 0.00% 0.00% 0.00%
SWO0 0.00%  0.00% 100.00% 100.00% 0.00% 0.00%
SEY2 14.29% 12.50%  4.00% 0.00% 0.00% 27.27%  27.27%
SN9 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
SN90 0.00% 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
SW3 0.00% 12.00% 0.00% 0.00% 0.00% 0.00%
SQ3I16 57.14% = 50.00% 33.33%  33.33% 36.36%  36.36%
SWP 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
SEYO 57.14% 50.00% 16.00% 0.00% 0.00% 36.36%  36.36%
SWN 0.00%  0.00% 0.00% 0.00% 0.00% 0.00%
SQ3Z 14.29% 12.50%  4.00% 0.00% 0.00% 18.18% 18.18%
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Risk Assessment (continued)

Using more abstract classes in the ontology
only helps to reduce the risk of the sensors
involved in discovering the lower level entity
type

It also adds more sensors to the risk
assessment, thus increasing the risk of all
sensors in general

o Thus risks of 0% will, in most cases, increase
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Risk Assessment

Sensor Entity

P07 PO P P82 P8 P 4UZ 4U 4
SEH 1429% 12.50%  8.00% | 33.33% 3333% 800% | 18.18% 18.18% 16.98%
SQ3IR 1429% 12.50% 24.00% | 33.33% 33.33% 24.00% | 36.36% 36.36% 22.64%
SEC 1429% 12.50%  4.00% 0.00% 0.00% 4.00% | 18.18%  18.18% 11.32%
SNH 0.00% 0.00% 36.00% 0.00% 0.00% 36.00% | 100.00% 100.00% = 52.83%
SW 0.00% 0.00% 12.00% 0.00% 0.00% 12.00% 0.00% 0.00%  7.55%
SQ5 1429% 12.50%  4.00% 0.00% 0.00%  4.00% 9.09% 9.09%
SNU 100.00% @ 87.50% 48.00% 0.00% 0.00% 48.00% 0.00% 0.00%  3.77%
SN8 0.00% 12.50% = 4.00% 0.00% 0.00%  4.00% 0.00% 0.00%  0.00%
SWO0 0.00% 0.00% 24.00% | 100.00% 100.00% = 24.00% 0.00% 0.00%  7.55%
SEY2 1429% 12.50%  4.00% 0.00% 0.00% 4.00% | 2727% 27.27% 11.32%
SN9 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00%  1.89%
SN90 0.00% 0.00%  0.00% 0.00% 0.00%  0.00% 0.00% 0.00% 1.89%
SW3 0.00% 12.50% = 12.00% 0.00% 0.00% 12.00% 0.00% 0.00% 15.09%
SQ316 57.14% = 50.00% i 3333% 33.33% 56.00% | 36.36%  36.36% @ 22.64%
SWP 0.00%  0.00% 12.00% 0.00% 0.00% 12.00% 0.00% 0.00% 16.98%
SEYO 57.14% 50.00% 16.00% 0.00% 0.00% 16.00% | 36.36%  36.36%
SWN 0.00% 0.00% 12.00% 0.00% 0.00% 12.00% 0.00% 0.00%  9.43%
SQ3Z 1429% 12.50%  4.00% 0.00% 0.00% 4.00% | 18.18%  18.18%
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Conclusions and Future Work

ASP provides sensor disclosure risk estimates for
different detections and sensors

Users can choose explore different hypotheses for
information release through the graphical interface

We are currently adding
spatial and temporal reasoning

The choice of the appropriate level
of abstraction for information release
IS not always intuitive, but it can be
facilitated by the proposed approach

1) | [223] Avialable Entites: | [(Car
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