
 

Abstract—An approach to the modelling of team 

sensemaking is presented that relies on the use of multiple 

agents integrated into larger communication network 

structures. Sensemaking is cast as a type of constraint 

satisfaction problem, and thus the cognitive architecture of 

each agent within the model is implemented as a constraint 

satisfaction network. The effect of manipulating a number of 

communication variables (the frequency of inter-agent 

communication, the type of information communicated and 

the point at which inter-agent communication takes place) 

are explored in three computer simulation studies. The 

results suggest that precipitant forms of information sharing 

may result in agents assigning undue significance to 

information that is largely consistent or compatible with 

pre-existing or prevailing cognitions. These results are 

consistent with other results reported in the distributed 

cognition literature, and they suggest that the future use of 

constraint satisfaction network models could have value in 

terms of improving our understanding of socially-

distributed cognition in military coalition environments. 

1. INTRODUCTION 

Cognitive processing in military coalition organizations 

typically involves the coordinated effort of multiple 

individuals. This raises important questions about how the 

various features of military coalition environments might 

affect collective cognitive outcomes (for example, those 

associated with planning and decision-making). Features 

that might turn out to be important in this respect include 

the following: 

1. Communication Networks: There is an increasing 

reliance on mobile ad hoc networks (MANETS) within 

military coalitions, and this may significantly affect the 

dynamics of inter-agent communication. 

2. Quality of Information: The information that must be 

processed by military coalitions is seldom perfect. 

Information is often uncertain, ambiguous and 

conflicting, and in some cases it may be deliberately 

manipulated by hostile agents in order to subvert 

coalition decision-making and undermine coalition 

situation awareness. 

3. Cultural Differences: Cultural differences between 

the members of a coalition organization may lead to 

miscommunication and misunderstanding [see 1]. This 

may stem from differences in language, knowledge, 

training and experience. 

4. Trust: Different levels of trust between agents may 

lead to inefficiencies in information processing. For 

example, individuals from different groups may fail to 

adequately integrate available information into 

decision-making processes as a result of poor trust 

relationships. 

5. Limited Information Sharing: The sharing of 

information within a coalition organization may be 

limited for a number of reasons. Security constraints 

may limit information access, communication 

networks may limit information distribution, and 

differences in information technology may make 

information difficult to exploit and integrate into 

ongoing cognitive processes.  

Clearly, this is not an exhaustive list of features; however, it 

does highlight some of the potential factors that may affect 

cognitive processing in coalition organizations, especially 

when that processing is distributed across multiple 

individuals and culturally disparate groups. 

In order to improve our understanding of collective 

cognition in military coalition environments, it is important 

to undertake empirical studies that systematically explore 

the effect of various types of features on the dynamics of 

collective cognitive processing. Unfortunately, the nature of 

the coalition environment means that studies with human 

subjects are both difficult to design and implement. As a 

result, it may be important to consider the use of computer 

simulation techniques (particularly those involving multi-

agent systems) in which some aspect of collective cognitive 

processing is studied in silico. The problem with many 

multi-agent simulations, however, is that the agents lack the 

kind of features that make the models of psychological 

interest and relevance. In many cases, the agents consist of 

simple processing units that respond in relatively limited 

ways to simple and unstructured inputs.  

In order to address these concerns, the current work adopts 

an approach to agent simulation that is grounded in an 

extensive body of work in the psychological literature. The 

approach involves the use of constraint satisfaction 

networks (CSNs), which are used to model the temporal 

evolution of an agent‘s cognitive states (beliefs, opinions, 

attitudes, evaluations and so on) across time. A CSN is apt 

for problems which involve the simultaneous satisfaction of 

multiple soft constraints, and many types of psychological 

phenomena may be seen as involving something like this 
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capability. Indeed, CSNs have been used in simulation 

studies exploring a range of psychological phenomena, 

including belief revision, explanation, schema completion, 

analogical reasoning, causal attribution, discourse 

comprehension, content-addressable memories, cognitive 

dissonance and attitude change [2-7]. Furthermore, CSNs 

have been used to explore the dynamics of socially-

distributed cognition [8], and this is precisely the kind of 

cognitive processing we are interested in when it comes to 

coalition organizations. 

The specific cognitive phenomenon of interest in the current 

study is sensemaking, which has been defined as ―a 

motivated, continuous effort to understand connections 

(which can be among people, places, and events) in order to 

anticipate their trajectories and act effectively‖ [9]. 

Sensemaking has also been discussed at the collective or 

team level as well as at the level of individual agents. Klein 

et al [10] thus define team sensemaking as ―the process by 

which a team manages and coordinates its efforts to explain 

the current situation and to anticipate future situations, 

typically under uncertain or ambiguous conditions.‖ We 

argue that sensemaking can be approached as a form of 

constraint satisfaction problem, and CSNs can thus be 

usefully applied to model the sensemaking efforts of 

individuals. In addition to this, we suggest that networks of 

CSNs can be used to model at least some of the constituent 

processes associated with sensemaking at the collective 

level (i.e. team sensemaking). In particular, we suggest that 

the flow of information between individual CSNs in a 

network of CSNs provides a rough analogue to inter-agent 

communication in collective sensemaking situations. 

Inasmuch as this is the case, simulations consisting of 

multiple CSNs may enable us to explore the effect of 

different inter-agent communication variables on team 

sensemaking outcomes. 

The experimental studies described in the current paper 

require agents to perform a particular task. Briefly, agents 

are presented with information about the features of a 

particular object, and they then have to form a belief about 

what the object might be. Agents establish beliefs about the 

object by integrating presented information with 

background knowledge. A complicating feature of the task 

is that agents are not presented with perfect information 

about an object‘s features. Instead, the information 

resembles that seen in many military conflict situations; i.e. 

the information is incomplete, uncertain, ambiguous and 

conflicting. To keep the discussion as simple as possible and 

to avoid the introduction of domain-specific terminology, 

the task used in the current experiments centres on the 

processing of simple feature sets associated with two types 

of animals, namely cats and birds.  

2. COMPUTATIONAL MODEL 

2.1. Architecture 

The computational model developed to explore team 

sensemaking in the current paper is based on the consonance 

model developed by Schultz and Lepper [4]. Each agent 

within the model is implemented as a CSN (following the 

design specification outlined by Schultz and Lepper), and 

these individual CSNs are connected together to form a 

network of CSNs (i.e. a network of networks). The nodes 

which make up each CSN are organized into a number of 

cognitive units, each of which represents a particular belief 

held by the agent. For example, the agent in Figure 1 

consists of 6 cognitive units, each of which represents 

beliefs about two types of animals, namely cats and birds. 

Four of these units represent beliefs about the features 

typically associated with objects. They are called ‗feature 

beliefs‘. Other units represent beliefs about the object itself. 

They are called ‗object beliefs‘.  

Internally, each cognitive unit consists of two nodes which 

are connected together in a mutual inhibitory fashion (see 

Figure 2). One of these nodes is labelled as the ‗positive 

pole‘ (P), and the other is labelled as the ‗negative pole‘ (N). 

The difference in activation between these two nodes 

determines the extent to which an agent holds the belief 

represented by the cognitive unit. Thus, if the activation of 

the positive pole is high relative to the negative pole, then 

the net activation for the cognitive unit will be positive and 

the agent can be said to possess the belief represented by the 

cognitive unit. Conversely, if the activation of the negative 

 
Figure 1. Organization of cognitive units in a single agent. Circles represent 

cognitive units, each of which consists of two processing nodes. Solid lines 
symbolize excitatory connections between the units, while broken lines 

symbolize inhibitory links. Shaded circles represent beliefs about the 

features of objects (feature beliefs), while white circles represent beliefs 
about the object itself (object beliefs).  
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Figure 2. The anatomy of a cognitive unit. Each unit consists of two nodes, 

one of which is the positive pole (P) and the other is the negative pole (N). 

P and N are connected via mutual inhibitory links. In addition, each node 
has an auto-regulatory connection that connects each node to itself. The 

function of this auto-regulatory link is to dampen the node‘s activity at each 

processing cycle [see 4, for details]. All links within the cognitive unit are 

inhibitory, as is indicated by the broken lines in the figure. 
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pole is high relative to the positive pole, then the net 

activation for the cognitive unit will be negative and the 

agent cannot be said to possess the belief represented by the 

cognitive unit. 

Within an agent, cognitive units can be connected to other 

cognitive units via inhibitory or excitatory links. Whether 

the connection between two cognitive units is excitatory or 

inhibitory in nature depends on the compatibility or 

consistency of the beliefs represented by the cognitive units. 

In our simulations, agents are presented with the task of 

making a decision about the type of an object (an animal) 

based on limited information about the presence of its 

associated features (e.g. whether it has feathers or fur). The 

result is that cognitive units are always connected together 

in a way that reflects the association of particular animals 

with particular features. For example, the ‗cat‘ cognitive 

unit is always connected to the ‗meows‘ and ‗has-fur‘ units 

because if an agent believes that a cat is present then they 

will also believe in the presence of cat-related features. 

Similarly, the ‗bird‘ cognitive unit is always connected to 

the ‗tweets‘ and ‗has-feather‘ units because of the natural 

association between birds and these features.  

Cognitive units that represent incompatible beliefs are 

connected via inhibitory connections. Thus, in our case, if 

an agent was to believe that an unknown object 

corresponded to a cat, it would not make sense to 

simultaneously believe that the object had a feature 

naturally associated with a bird. For example, it would not 

make sense to connect the ‗cat‘ unit and the ‗has-feathers‘ 

unit with an excitatory connection. To do so would create a 

situation where an agent held beliefs that conflicted with the 

structure of the target domain. Agents in our simulations 

always attempt to make sense of conflicting, ambiguous and 

uncertain information by changing their beliefs in ways that 

are consistent with both external information (sensory data) 

and background knowledge. For this reason, it is important 

that the pattern of excitatory and inhibitory links between 

cognitive units (reflecting an agent‘s background 

knowledge) coincides with the properties of the domain to 

which the agent‘s beliefs apply
1
. 

                                                           
1 Although it is not a feature of our model, it is obviously possible for 

cognitive units to be neither compatible or incompatible (i.e. they are not 

The pattern of connectivity between cognitive units for all 

agents in our simulations is shown in Figure 1. 

Architecturally, each inter-cognition linkage is represented 

by connections between the constituent nodes of the 

cognitive unit. Thus, an inter-cognition linkage is not a 

single connection; instead, it consists of a total of eight 

connections, with two connections emanating from each of 

the nodes in the two cognitive units. In our model, a positive 

connection between cognitive units is represented by the 

wiring diagram shown in Figure 3A, and a negative 

connection is represented by the wiring diagram shown in 

Figure 3B. With eight connections comprising each inter-

cognition linkage, and a connectivity pattern between 

cognitive units based on that seen in Figure 1, it can be seen 

that each agent consists of 120 connections between the 

nodes of different cognitive units. Within each cognitive 

unit, there are an additional two (inhibitory) connections 

linking the two nodes, and a further two auto-regulatory 

connections. The result is that each agent in the model 

consists of 12 nodes, 6 cognitive units and 144 connections. 

In addition to a sign, indicating whether a connection exerts 

an excitatory or inhibitory influence on its target node, each 

connection has a weighting that determines the amount of 

influence it exerts. Although these weights could assume a 

variety of values, in the current study we limit all weights to 

values of either 0.5 (excitatory) or -0.5 (inhibitory).   

Agents are connected into networks via the inclusion of 

linkages between agents. Each inter-agent connection is in 

fact a set of bidirectional linkages between the 

corresponding nodes of each agent. Thus, if agent A is 

connected to agent B, then bidirectional connections will 

exist between each of the corresponding nodes of agent A 

and B. The nodes in the ‗cat‘ unit of agent A will be 

connected to the nodes of the ‗cat‘ unit in agent B, the nodes 

of the ‗has-fur‘ unit in agent A will be connected to the 

nodes of the ‗has-fur‘ unit in agent B, and so on. Based on 

this organizational scheme, we can see that each inter-agent 

linkage consists of 24 individual connections (two 

connections for each node, one going from agent A to agent 

B and one going from agent B to agent A).  

                                                                                                  
associated in any way). In this case, the cognitive units can be connected by 

a zero weighted set of links, or the inter-cognition linkage can simply be 
removed. 

 
 

Figure 3. Figure showing the connectivity pattern for both positive (A) and negative (B) linkages between cognitive units. Excitatory connections are 
symbolized by solid lines, inhibitory connections by dashed lines. 
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As with the connections within an individual agent, the 

connections between agents can have both a sign and a 

weighting value. To keep our simulations simple, we use a 

single weighting value of 0.5 for all inter-agent connections. 

Clearly, this is an oversimplification relative to the real 

world since the weighting of the inter-agent connections 

determines the degree to which one agent influences 

another, and agents influence one another to different 

degrees based on a variety of factors (e.g. the level of trust 

that exists between them). One future extension of this work 

is thus to examine the effect of variable inter-agent 

connection weights, perhaps allowing these weights to 

change dynamically throughout the course of a simulation 

(see Section 4.3). 

Note that in the work reported here, we use a small network 

consisting of only 4 agents, with all agents connected to one 

another. In this sense, the agent network has a fully-

connected topology. Given the small number of agents 

involved in the simulations it did not make sense to explore 

alternative kinds of network topology (e.g. random or small-

world networks). As with the manipulation of inter-agent 

connection weights, this dimension of the computational 

model provides a potential direction for future research (see 

Section 4.1).   

2.2. Initial Activation Vectors 

When an agent is presented with a body of environmental 

information corresponding to the presence or absence of 

particular features of an object, they will attempt to make 

sense of the information by systematically changing their 

beliefs based on the interactions between cognitive units. A 

processing cycle thus consists of the initial presentation of 

an activation vector providing information about the 

presence or absence of particular features in the 

environment. In our simulations, we assume that the initial 

information an agent is presented with is based on indirect 

observation (perhaps via a sensor) and is therefore 

vulnerable to distortion. In particular, we assume that the 

information provided to agents resembles that presented to 

analysts and decision makers in hostile conflict situations 

(i.e. the information is incomplete, uncertain, ambiguous, 

and conflicting). For this reason, all the information 

presented to agents in the current simulations is imperfect. 

Perfect information would consist of an activation vector 

that, when processed by the agents, would immediately 

result in the agents expressing beliefs that perfectly 

coincided with ground truth. For example, if agents are 

tasked with making a decision about the type of an unknown 

object, and the object is a bird, then in a situation of perfect 

information the agents should express the belief that the 

object is a bird when presented with the environmental 

information, and they should express high confidence in this 

decision outcome. In contrast, in a situation of imperfect 

information, agents will form beliefs, but they may have 

little confidence in these beliefs. In addition, some beliefs 

may be activated at the same time as other, incompatible 

beliefs.  

In the simulations presented here, agents were presented 

with imperfect information that resulted in the weak 

activation of beliefs, some of which were incompatible with 

other beliefs (the actual activation values presented to 

agents across all simulations are presented in Table 1). We 

consider this state to resemble an initial state of confusion or 

uncertainty that must be resolved over the course of 

successive processing cycles in order to reach a particular 

decision outcome. The simultaneous activation of 

inconsistent beliefs (cognitions) in our model leads an agent 

to revise their beliefs in ways that satisfy the constraints 

imposed by both the external information and their internal 

background knowledge. This constitutes the main driving 

force for internally-driven cognitive change in our model, 

and it is the means by which agents attempt to make sense 

of ambiguous, uncertain and conflicting information. 

2.3. Processing Dynamics 

In each simulation, the activation vectors presented in Table 

1 were used to determine the initial activation levels of the 

feature nodes of each of the four agents
2
. The activation of 

each node was then updated across successive processing 

cycles using the following update rules: 

                                  (1) 

when neti ≥ 0, and 

                                (2) 

when neti < 0. In these equations, ai(t + 1) is the activation 

of unit i at time t + 1, ai(t) is the activation of unit i at time t, 

ceiling is the maximal level of activation of the node
3
, floor 

is the minimum activation of the node (zero for all nodes), 

and neti is the net input to unit i, which is defined as: 

                  
 

 (3) 

where resisti is a measure of the resistance of unit i to 

                                                           
2 In addition to these activation values, the positive pole of each of the 

‗bird‘ cognitive units within each agent was set to 0.5. This initial 
activation of the ‗bird‘ cognitive unit was intended to represent the 

expectations of each agent. Each agent therefore expected to observe a bird, 

whereas in fact the weight of evidence that agents were presented with 
suggested that the target object was, in fact, a cat. 

3 In the current simulations, positive poles had a ceiling value of 1.0, 

whereas negative poles had a ceiling value of 0.5. The reason for this 
difference in ceiling values is explain in Schultz and Lepper [4]. 

Node Agent A Agent B Agent C Agent D Total 

has-fur 0.3 0.3 0.5 0.0 1.1 

has-fur 0.0 0.0 0.0 0.0 0.0 

meows 0.2 0.2 0.2 0.0 0.6 

meows 0.0 0.0 0.0 0.0 0.0 

has-feathers 0.0 0.0 0.2 0.5 0.7 

has feathers 0.0 0.0 0.0 0.0 0.0 

tweets 0.0 0.0 0.0 0.0 0.0 

tweets 0.0 0.0 0.0 0.0 0.0 

Table 1. Initial activation vectors presented to agents. Shaded cells indicate 
the vectors used to activate the P nodes of cognitive units. The same set of 

activation vectors was used at the outset of every simulation reported in the 

current paper.  

 
 



 

having its activation changed. In general, the smaller the 

value of this parameter, the greater the resistance to 

activation change, and thus the greater the resistance to 

cognitive change. One possible use of this parameter is to 

make certain types of beliefs less resistant to change than 

others; however, in the current simulation, we fixed the 

resisti parameter at a value of 0.5 for all nodes. 

At each point in the processing cycle, n nodes are randomly 

selected and updated according to equations 1 and 2, where 

n corresponds to the number of units in the network (12 in 

our case). This continues until the pattern of activation in 

each of the agent networks settles down. Typically, in the 

case of our simulations, 20 processing cycles were sufficient 

for a stable pattern of activation to be achieved.  

In some simulations, agents were allowed to communicate 

with one another on particular cycles. When communication 

was enabled, each talking agent contributed activation to the 

nodes of listening agents. Each node was associated with a 

parameter, comminputi, which is the weighted sum of 

activation received from all talking agents. On cycles where 

agents communicated, this parameter was updated according 

to the following equation: 

                 
 

 (4) 

where Aj represents the activation value of a node in the 

talking agent and Wij represents the weight of the connection 

from node j (in the talking agent) to node i (in the listening 

agent). 

At the next processing cycle, comminputi was incorporated 

into the activation equations by extending equation 3 as 

follows: 

                   
 

               

(5) 

Once the communicated activation had been incorporated 

into the node‘s current activation level, comminputi was 

reset to zero in order to avoid repetitive presentation of the 

same communicated information across successive 

processing cycles.  

3. SIMULATIONS 

Based on the kinds of features that may affect collective 

cognition in military coalition environments (see Section 1), 

there are clearly a large number of variables that could be 

the focus of empirical investigations. In the present section, 

we focus on the communication between agents, and we 

report the results obtained with three types of experimental 

manipulation.  

3.1. Experiment 1: Communication Frequency 

In any form of socially-distributed information processing, 

it is important to understand the effect that different levels 

of inter-agent communication have on collective cognitive 

outcomes. One might assume that a team of individuals will 

function at its best when they are allowed to communicate 

to all members of a team at all stages of a problem-solving 

process. This assumption may not, however, be correct. A 

number of studies have thus suggested that precipitant forms 

of information sharing might result in sub-optimal levels of 

team performance [11]. 

Method 

In order to explore the effect of communication frequency 

on the temporal evolution of belief states in the 

aforementioned multi-agent model, we studied groups of 

agents under three experimental conditions. In the first 

condition (‗No Communication‘), we proscribed all inter-

agent communication. All agents therefore processed the 

information that they were initially presented with, and they 

were not allowed to communicate the intermediate or final 

results of their processing to other agents. In the second 

condition (‗Low Frequency Communication‘), agents were 

allowed to communicate on every fourth processing cycle. 

Given that each simulation was run for a total of 20 cycles, 

this enabled agents to communicate with one another a total 

of 5 times during the course of the simulation. In the third 

condition (‗High Frequency Communication‘), agents were 

allowed to communicate on every cycle of the simulation. 

This meant that at every cycle of the simulation, all agents 

were talking to all other agents and communicating 

information about their belief states. 

For the purposes of this experiment, we did not opt to limit 

inter-agent communication in any way except with regard to 

frequency. Thus on every cycle that agents communicated, 

all agents communicated with every other agent. In addition, 

all agents communicated information about all of their 

beliefs; we did not limit communication to a particular 

subset of agent beliefs. 

Each simulation lasted for 20 cycles, and we ran 50 separate 

simulations for each of the agents in each of the three 

experimental conditions (i.e. a total of 50 × 4 × 3 = 600 

simulations). 

Results 

The results of the experiment are presented in Figure 4. 

Figure 4 shows the net activation of the ‗cat‘ and ‗bird‘ 

cognitive units for each of the agents in each of the three 

experimental conditions. As can be seen from the results, 

when no communication between the agents was allowed, 

agents A and B both settled on a cognitive state in which the 

‗cat‘ belief predominated. This contrasted with the results 

for agent C in which both the ‗cat‘ and ‗bird‘ beliefs were 

active. This agent appeared somewhat ambivalent with 

regard to the object that was presented, and they were not 

able to ‗make up their mind‘ as to what was the correct 

solution. Agent D showed no such problems: D settled on a 

solution by the tenth processing cycle and was unchanged 

thereafter. 



 

A similar pattern of results was obtained in the second 

condition, which permitted low levels of communication 

between the agents (second row of tiles in Figure 4). One 

difference from the results seen in the first condition is that 

agents A and B appeared less confident about their ‗cat‘ 

beliefs at the conclusion of the simulations.  

Finally, when frequent communication was enabled in the 

third condition, a different pattern of results was obtained. 

Now all the agents rapidly developed the belief that the 

unknown object was a bird. This is despite the fact that the 

weight of evidence from the body of initial information (see 

Table 1) suggests that the unknown object was a cat
4
. 

3.2. Experiment 2: Type of Communicated Information 

Experiment 1 varied the frequency with which agents were 

allowed to communicate, but it did not seek to control the 

kind of information that was actually communicated. When 

we look at the kinds of beliefs that agents in the simulation 

may entertain, we can see two distinct types of beliefs: those 

corresponding to beliefs about the features of objects 

(‗feature beliefs‘), and those corresponding to beliefs about 

the objects themselves (‗object beliefs‘). As an extension of 

Experiment 1, therefore, we might consider the extent to 

which the type of communicated information affects the 

                                                           
4 Note that the total activation associated with cat-related feature units in 

Table 1 (summed across all agents) is higher than that associated with bird-
related feature units. 

dynamics of social information processing.  

In situations where only the ‗feature beliefs‘ are 

communicated, agents may be seen as restricting their 

communication to the information they have received from 

external sources (e.g. sensor systems) (or at least as limiting 

their conversation to the ‗thoughts‘ they have about such 

information). In situations where only the ‗object beliefs‘ 

are communicated, agents may be seen as communicating 

their opinions on what the unknown object actually is (i.e. 

the outcome of the sensemaking process). This latter 

situation may correspond to a state-of-affairs in which 

decision outcomes are communicated without any 

supporting information (or rationale). The former situation 

may correspond to a state-of-affairs in which received 

information is subjected to some limited information 

processing and then communicated without a final decision 

being reached.  

Method 

The experimental design was a 2 × 2 factorial design in 

which one factor (frequency of communication) was derived 

from the previous experiment. In this case, the factor had 

two levels: ‗Low Frequency Communication‘ (LFC) and 

‗High Frequency Communication‘ (HFC) corresponding to 

the low and high frequency communication conditions of 

the previous experiment. The other factor (information type) 

had two levels based on whether agents communicated 

 
Figure 4. Results for Experiment 1. Each graphic tile shows the results obtained for a particular agent in a particular experimental condition. The first row 

illustrates the results obtained in the ‗No Communication‘ condition, the second row illustrates the results obtained in the ‗Low Frequency Communication‘ 
condition, and the third row illustrates the results obtained in the ‗High Frequency Communication‘ condition. The blue data series represents the net 

activation of the ‗cat‘ cognitive unit (reflecting the agent‘s belief that a cat is present), while the yellow data series represents the net activation of the ‗bird‘ 

cognitive unit (reflecting the agent‘s belief that a bird is present). 
 

 

 
 



 

information about ‗feature beliefs‘ or ‗object beliefs‘. As for 

Experiment 1, each simulation lasted for 20 cycles, and we 

ran 50 separate simulations for each agent in each 

experimental condition (i.e. a total of 50 × 4 × 4 = 800 

simulations). 

Results 

The results from Experiment 2 are presented in Table 2. 

Table 2 shows the net activation values for the ‗cat‘ and 

‗bird‘ cognitive units for each agent in each experimental 

condition at the conclusion of the simulations (i.e. at 

processing cycle 20).   

In the case of ‗feature beliefs‘ the pattern of results obtained 

for the low frequency communication condition was similar 

to that obtained for the low frequency communication 

condition of Experiment 1. In both cases, agents A and B 

end the simulation with the ‗cat‘ belief predominating, and 

agents C and D both end the simulation with the ‗bird‘ 

belief predominating. For the high frequency 

communication condition, the results are again similar to 

those seen in Experiment 1: all agents conclude the 

simulation believing that the unknown object corresponds to 

a bird. 

In the case of ‗object beliefs‘, the pattern of results is also 

similar to that seen in Experiment 1. The results from these 

experiments therefore seem to suggest that the distinction 

between ‗feature beliefs‘ and ‗object beliefs‘ in the current 

simulation is of little significance when it comes to 

understanding the potential impact of different types of 

communicated information on agents‘ sensemaking 

capabilities.    

3.3. Experiment 3: Timing of Inter-Agent 

Communication 

In addition to the frequency of communication, we can also 

think about the potential effect of the timing of 

communication on collective cognitive processing. For 

example, rather than allow communication at every cycle of 

the simulation (as was the case in the aforementioned high 

frequency communication conditions) we could allow 

agents to communicate with high frequency at particular 

points in a simulation (for example, at the beginning or the 

end of the simulation). One reason to think that this may be 

important is that previous computer simulation studies have 

suggested that early communication may cause agents to 

give undue weight to certain features of a problem. In one 

study, for example, the cognitive anthropologist, Edwin 

Hutchins, investigated the effect of inter-agent 

communication on the ability of agents to arrive at an 

accurate shared interpretation of ambiguous environmental 

information. What Hutchins [8] discovered was that early 

forms of interaction led to a situation of confirmation bias in 

which agents failed to give due weight to information that 

conflicted with their initial interpretation of some external 

state-of-affairs.  

Method 

To understand the effect of early or late communication on 

the dynamics of agent processing, we ran an experiment in 

which agents were allowed to communicate on cycles 1-5 or 

cycles 16-20 of a 30 cycle simulation. Given the apparently 

insignificant role played by information type in determining 

cognitive outcomes (see Experiment 2), we allowed agents 

to communicate information about all of their beliefs. 

Results  

The results of the study are presented in Figure 5. As can be 

seen from Figure 5, when agents were allowed to 

communicate at the beginning of the simulation, they 

rapidly converged on a particular interpretation in which the 

‗bird belief‘ predominated. In contrast, when 

communication was restricted to a later stage of the 

simulation, agents tended to settle on a pattern of beliefs that 

resembled that seen when they engaged in no 

communication at all (see Figure 4 – first row of tiles). This 

pattern of results is particularly noticeable for agents A and 

B. The temporal evolution of their belief profiles was 

completely transformed as a result of participation in early 

(as opposed to late) forms of inter-agent communication. It 

is also worth noting that the activation of the ‗cat‘ unit in 

agent C was higher (relative to the ‗bird‘ unit) in the late 

communication condition. This contrasted with the pattern 

of results seen in Experiments 1 and 2 in which the net 

activation of the ‗bird‘ unit was generally higher than the 

‗cat‘ unit for agent C. Given that the weight of evidence 

suggests the presence of a cat (see Table 1), this might 

suggest that delayed communication has a positive effect in 

terms of promoting correct interpretations under highly 

Cognitive Unit LFC/Feature Beliefs LFC/Object Beliefs HFC/Feature Beliefs HFC/Object Beliefs 

Agent A – Cat 0.40 0.61 0.04 -0.32 

Agent A – Bird 0.10 -0.11  0.46 0.82 

Agent B – Cat 0.43 0.43  -0.02 -0.35 

Agent B – Bird 0.07 0.07 0.52 0.85 

Agent C – Cat 0.16 0.13 0.07 -0.44 

Agent C – Bird 0.34 0.37 0.43 0.94 

Agent D – Cat -0.50 -0.50 -0.50  -0.50 

Agent D – Bird 1.00 1.00 1.00 1.00 
 

Table 2. Results of Experiment 2. Table shows the net activation values for the ‗cat‘ and ‗bird‘ cognitive units for each agent in each experimental condition 
at the conclusion of the simulations (i.e. at the 20th processing cycle of the simulations). Each of the values in the table cells is averaged over 50 simulations. 

(LFC = Low Frequency Communication; HFC = High Frequency Communication) 

 
 

 
 



 

uncertain or ambiguous conditions – precisely the kind of 

conditions identified by Klein et al [10] in their analysis of 

team sensemaking. 

3.4. General Discussion 

The results of these studies suggest the following: 

1. As the frequency of communication increases, agents 

tend to rapidly converge on a common interpretation of 

noisy environmental data (see Experiment 1). Thus, 

when communication was allowed at every cycle of a 

simulation, agents quickly settled on the belief that a 

bird was present (see Figure 4 – third row). 

Unfortunately, this is not consistent with the weight of 

evidence provided by the initial datasets (see Table 1) 

which indicate the presence of a cat. 

2. The type of information communicated by agents 

(information about object features or object type) 

seems to have little effect on the pattern of results 

obtained in low and high frequency communication 

conditions (see Experiment 2). 

3. Communication that takes place early on in a 

simulation tends to lead to rapid convergence on a 

particular interpretation of the data, and agents seem to 

express high confidence in these interpretations. This 

result is not seen when communication takes place 

later on in the simulation. In this case, the pattern of 

results resembles that seen when agents engage in no 

communication whatsoever. 

The effect of high frequency communication and early 

communication in these studies is particularly interesting. 

What seems to happen in these conditions is that undue 

significance is given to agents‘ initial expectations about the 

kind of object they will encounter. Agents started the 

simulation with the expectation that they would encounter a 

bird, and this may have been reinforced in situations where 

agents transmitted information about their initial views and 

interpretations of the environmental data. This explanation 

cannot, however, account for all of the simulation results 

obtained. In Experiment 2, for instance, communication 

about ‗object beliefs‘ was disabled in one of the 

experimental conditions, and yet this did not significantly 

alter the pattern of results obtained.  

In addition to the effect of initial expectancies, it may be 

that precipitant forms of information sharing lead agents to 

assign undue significance to information that is compatible 

or consistent with their initial views, especially when the 

information they receive is ambiguous or uncertain. Thus 

even in situations where agent communication is restricted 

to ‗feature beliefs‘, this still allows for the transmission of 

some information that is consistent with an agent‘s initial 

expectations, and, in this situation, the agent may assign 

greater weight to the ‗consistent‘ information they receive 

from other agents and discount the information they have 

acquired or gathered themselves. 

4. MODEL EXTENSIONS AND FUTURE WORK 

The simulation results described in the previous section 

represent an early attempt to develop a computational model 

for collective sensemaking that draws on the previous use of 

CSNs to examine psychological phenomena. Previous work 

has suggested how CSNs could be used to model aspects of 

individual cognition [e.g. 4], and the current work attempts 

to extend these efforts by applying CSNs to the problem of 

collective cognition. Currently, however, the approach 

features a number of limitations which need to be addressed 

in future work. In addition, there are a rich range of further 

simulations studies that could be undertaken based on a 

consideration of the kind of features that might plausibly 

affect collective cognition in military coalition 

environments. Some ideas for future research and 

development work are detailed below.  

 
Figure 5. Results for Experiment 3.Each graphic tile shows the results obtained for a particular agent in a particular experimental condition. The first row 
illustrates the results obtained in the ‗Early Communication‘ condition, while the second row illustrates the results obtained in the ‗Late Communication‘ 

condition. The blue data series represents the net activation of the ‗cat‘ cognitive unit (reflecting the agent‘s belief that a cat is present), while the yellow data 

series represents the net activation of the ‗bird‘ cognitive unit (reflecting the agent‘s belief that a bird is present). 
 

 

 
 



 

4.1. Network Topology  

As mentioned in Section 2.1, one extension of the current 

work is to explore the effect of different network topologies 

(e.g. random, small-world, and fully-connected) on 

collective sensemaking. Given the size of the agent teams 

examined in the current work, it did not make sense to vary 

the network topology in systematic ways. However, other 

work has shown that network topology affects the rate at 

which information flows through a community of agents, 

and this can sometimes exert effects on collective cognition 

[11, 12]. 

Another factor to consider here concerns the difference 

between dynamic and static network topologies [see 11, 13]. 

Most multi-agent simulations use communication networks 

with static topologies; i.e. topologies that are relatively 

invariant across the course of information processing. In 

contrast to this situation, many of the networks that are 

encountered in the real world have topologies that are highly 

dynamic. A consideration of dynamic networks is 

particularly important in the context of military coalition 

environments because of the increasing reliance on 

MANETS and wireless communication technologies [see 

11]. 

4.2. Agent Networks 

The agents in the current model feature a relatively small 

number of cognitive units (i.e. 6), with uniform absolute 

weights between the units (i.e. 0.5). One extension of the 

current model involves the development of networks with a 

greater number of cognitive units, a greater diversity of 

cognitive units, and variable weightings between the units.  

A greater diversity of cognitive units could be realized by 

recognizing the existence of different types of cognitions. 

Schultz and Lepper [4] for example, recognize three types 

of cognitive unit: justification, evaluation and behaviour 

units. The significance of this distinction lies in the value 

assigned to the resistance parameter associated with the 

nodes within a cognitive unit. In the current study, we use a 

common resistance parameter of 0.5 for all nodes; however,  

Schultz and Lepper adopt a different scheme in which some 

units rely on smaller resistance parameters. This has the 

effect of making the cognitive units differentially resistant 

to change, which may have important consequences for 

cognitive processing
5
. 

The weightings between cognitive units in our study have 

fixed absolute values of 0.5 and these weightings are 

invariant across the course of the simulation. One extension 

of the current work is thus to examine the effect of variable 

weightings between cognitive units. Since each linkage 

between cognitive units represents a psychological 

                                                           
5 This may provide one way of re-examining the effect of type of 

communicated information on collective sensemaking. One of the reasons 
Experiment 2 may have failed to yield any interesting results is because of 

the lack of any real differences between ‗feature beliefs‘ and ‗object 

beliefs‘. The use of different resistance parameters could be one way in 
which differences between these cognitions could be introduced. 

implication or association between belief states, the 

weighting associated with inter-cognition linkages may be 

deemed to reflect the strength of this implication or 

association. We assume that inter-cognition linkages are 

acquired as a result of prior learning, experience or training, 

and that they reflect the background knowledge (including 

assumptions, stereotypes and prejudices) that an agent 

brings to bear on a particular problem-solving activity. 

Inasmuch as this is true, we can see individual variability in 

the inter-cognition linkages as reflecting differences in the 

background knowledge that was acquired before the 

simulation exercise. 

The actual values for the weights associated with inter-

cognition linkages could be established in a number of 

ways. They could be subject to manual manipulation 

(although this clearly becomes unwieldy for simulations 

involving large numbers of agents with large numbers of 

cognitive units); they could be subject to some sort of 

randomized adjustment procedure (although this risks 

distancing agents from the knowledge-rich contingencies of 

the relevant task domain); or they could be acquired as a 

result of some prior learning experience. In respect of this 

latter possibility, previous work has shown how the 

connection weights for constraint satisfaction networks 

might be learned [see 14]. 

Individual differences in inter-cognition linkages may 

provide one way in which the current model can be applied 

to the problem of understanding the impact of cultural 

differences in military coalitions. One way of viewing 

cultural differences is to see them as reflecting statistically-

significant differences in the cognitive structures associated 

with the members of different cultural groups [15]. This 

means that cultural differences could be explored in the 

current model by varying inter-cognition linkages based on 

group membership criteria.  

Unlike the case with inter-agent linkages, we do not see a 

major role for inter-cognition linkages that are dynamically 

updated across the course of a simulation. The reason for 

this is that we see sensemaking as more a case of applying 

background knowledge and experience in order to 

understand some situation or system state, rather than a case 

of learning new things. Sensemaking (at least in the kinds of 

cases we are exploring), we suggest, capitalizes on past 

learning, but it does not involve any new learning. 

4.3. Inter-Agent Communication 

The simulations presented here used networks in which all 

agents were connected to all other agents using a standard 

connection weighting (i.e. 0.5). Since the weight assigned to 

an inter-agent link affects the influence exerted by one agent 

over another, it is important to consider models in which 

such weights have variable values. One interpretation of the 

weight value is that it represents the degree of trust between 

agents. Thus high trust between agents is reflected in links 

that have high weight values, and low trust is reflected in 

links that have low weight values. In the extreme case, the 



 

weights between two agents may be zero (reflecting a case 

of zero trust), in which case the effect is the same as if the 

agents never communicate.  

Future work could explore the impact of variable and 

dynamically updated trust weights. One example of how  

this scheme might be implemented is provided by Van 

Overwalle and Heylighen [16]. They present a network-of-

networks approach to modelling collective cognition in 

which each agent is represented by a recurrent auto-

associative neural network. The weights associated with 

inter-agent linkages in their model are updated during the 

course of a simulation by an updating rule that factors in the 

similarity of belief states between communicating agents. In 

essence, agents who share similar beliefs (i.e. express 

agreement) have their channel of communication 

strengthened so that they exert a greater influence on one 

another during future processing cycles. The reverse applies 

to agents who have dissimilar beliefs. 

4.4. Confidence 

Another factor for consideration in the context of future 

work is the confidence that agents have in their belief states 

and the extent to which this influences the communication 

of belief states. In the current simulation, confidence is 

represented by the level of net activation of a cognitive unit: 

an agent has high confidence in a belief if the net activation 

of the unit approximates its maximum activation level. 

Future studies could explore the effect of restricting inter-

agent communication to situations in which agents are 

required to have high confidence in their cognitions. This 

could be accomplished by incorporating a threshold function 

for cognitive state propagation.  

5. CONCLUSION 

Cognitive processing activities such as problem-solving and 

decision-making in military coalitions often depend on the 

coordinated interaction of multiple, distributed agents who 

communicate with one another via one or more coalition 

communication networks. In order to begin to understand 

the dynamics of collective cognitive processing in military 

coalition environments, we developed a computational 

model based on the use of multiple interacting agents, each 

of which was implemented as a CSN. Our results suggest 

that some aspects of inter-agent communication can affect 

agents‘ ability to correctly interpret bodies of ambiguous, 

uncertain and conflicting information. For example, when 

agents were allowed to participate in high frequency 

communication at the outset of a problem-solving task, they 

tended to converge on an inaccurate interpretation of 

environmental information. This effect was not observed 

when agents were allowed to independently ‗think about‘ 

some body of information and then come to their own 

conclusion before engaging in communication. In these 

situations, an agent‘s beliefs were generally resistant to the 

effects exerted by agents who had come to different 

conclusions. These results are generally supportive of other 

results in the distributed cognition literature that have used 

CSNs [see 8], and they suggest that the future use of CSN-

based models could have value in terms of improving our 

understanding of socially-distributed cognition in military 

coalition environments. 
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