
Extending Net-Centricity to Coalition
Operations

Niranjan Suri, Andrzej Uszok, Rita Lenzi,
Massimiliano Marcon, Maggie Breedy, Jeffrey M. Bradshaw

Yat Fu, James Hanna, Vaughn Combs, Asher Sinclair,
Rob Grant, Robert Hillman

Motivation
  Network-centric Operations Considered Important

  Information Superiority contributes to mission success

  Significant Research and Development within US DoD

  But… Most Operations are Coalition-based

  Therefore, need to support Network-centric Operations
for Coalitions

  Challenge: Information Sharing in Coalition Environments

Example: Joint Battlespace Infosphere
  Architecture developed by AFRL
  Supports Publish / Subscribe / Query of Metadata tagged

information
  Handles information matchmaking, routing among multiple publishers

and subscribers
  Metadata expressed as XML
  Subscriptions can use predicates
  Supports queries over XML metadata
  Supports archiving of published data

  Numerous implementations
  AFRL: Apollo, Phoenix

  Phoenix is also an abstract architecture – Fawkes is the first
implementation

  General Dynamics – Mercury

JBI Architecture

Requirements for JBI
  Clients connect via the CAPI (Client API) to

  Authenticate
  Publish Information
  Subscribe for Information
  Query for Information

  In coalition settings, this would imply
  Common authentication mechanisms
  Network connectivity!
  On-demand information exchange!!

Current State of Coalition Information
Sharing

  Much Like Cross-Domain Information Sharing / Exchange
(CDIS / CDIX)

  No Direct Network Connections Allowed
  All Data Must Flow Through Gateways / Interconnects
  Gateways use (Hardware) Guards

  High-assurance, trusted, and hardened platform
  For Example – Radiant Mercury

  Preconfigured to Support Limited and Controlled Data Flows
  Difficult / laborious to change

Current State of Coalition Information
Sharing (Continued)

Problems with Current Solution
  Rigidity

  Guards only allow pre-defined, structured data to pass
  Changing policies in the Guard is difficult / time consuming

  Speed
  Unstructured documents (or new types of structured

documents) must undergo human review

  Opacity
  Difficult / Impossible to Explore / Search for Information

Across Coalition Boundaries

  Implies no Net-Centricity

Towards a Solution…
  AFRL’s Services-based Phoenix IM Architecture
  AFRL’s Cross-Domain Information Solution

  IHMC’s Federation Capabilities
  IHMC’s Policy Management Capabilities

Phoenix

Background
  The Apollo reference implementation is the culmination of several

years of information management research
  The Apollo architecture was not designed with SoA in mind

  The movement toward and availability of SoA based middleware
permeates DoD
  IM application of these technologies are little understood, utilized solely for

information routing

  SoA’s offer numerous advantages
  Dynamic composition
  Extensibility
  Ability to rapidly address change requirements

  Needed a coherent and consistent architecture to support IM in a
SOA

What is Phoenix?

September 23, 10

  Service Oriented Architecture (SOA) for Information
Management (IM)
  Provides a set of independent, flexibly deployable IM services

  Submission, Subscription, Information Brokering, Dissemination,
Repository, Query, Type Management, Event Notification, Service
Brokering, Session Management, Information Discovery, Security,
Client Runtime, Connection, Stream Brokering, Stream Discovery,
Stream Repository

  Provides a set of supporting constructs
  Information, Frame, Stream, Event, Channel, Filter, Session

  Supports multiple orchestrations (reliability, availability,
performance)

  Defines universal IM services (Pub/Sub/Query)

Constructs
  Information

  Well characterized data that flows between and among
producers and consumers (applications) and services

  This construct consists of:
  An information type identifier – Defines the well known structure of

an information instance
  Metadata – Describes the payload and is used for brokering

(conforms to the metadata schema for this type)
  Payload – The actual information (or reference)
  An information context construct – Attributes that further describe

the information instance and/or implementation specific actions

Constructs (cont.)
  Channel

  Provides the mechanism for information to be moved between
and among the producers, consumers, and services (entities)
  Provides the “plumbing” that connects entities and enables effective

and efficient information flow
  Abstracts and encapsulates transport protocols
  Segregates information and control flows

  Control channel and Information channel is are distinct abstractions
  May be implemented using different protocols

Constructs (cont.)
  Filters

  Provide a mechanism to manipulate and/or modify information
as it flows through channels
  Filters may be attached to either end of a channel and may also be

chained (composed)
  Filters might be used to shape information flows to conform to

Quality of Service (QOS) policy, to perform dirty word search/
scrubbing of information to conform to security policy, to multiplex/
de-multiplex information flows, etc.

Submission Service
  Accepts information provided through a Channel from a

producing application
  Based on policy and service configuration

  May pass the information to one or more Information
Brokering Services through a Channel for predicate matching

  May pass the information to one or more Repository Services
through a Channel for information persistence

Information Brokering Service
  Matches the information against the set of registered

predicates to determine all appropriate endpoint
consumer applications

  Based on Configuration and policy:
  May pass the information to one or more Dissemination

services through a Channel for delivery to the appropriate
endpoint consumer

  May return a list of consumer IDs indicating appropriate
endpoints for delivery

Dissemination Service
  Accepts information through a Channel
  Delivers the information to the appropriate endpoint

consumer applications through a Channel
  Based on the list of consumer IDs

Repository Service

  Accepts Information through a Channel and inserts it
into a data store

  Provides interfaces that enable the deletion of
Information from the data store

  Provides interfaces that enable the archive and
removal and of Information from the data store
  Archives are higher latency data stores

Query Service

  Provides interfaces that enable information retrieval
from one or more underlying data store(s)

  Delivers the Information to the appropriate
consumer endpoint through a Channel

  Supports Synchronous and asynchronous query
operations

Service Orchestration

Information
Brokering Service

Online
Storage

Producer

Producer

Query
Consumer

Subscribing
Consumer

Submission
Service

Dissemination
Service

Repository
Service

Query
Service

?

= =

?
=

Cross-domain Information Solution

Cross Domain Innovation & Science
  AFRL CDIS Group Building Solutions for CDS

  Approach Based on
  XML Appliances
  Cross Domain Guards

  Have Interconnected
  Multiple Phoenix Instances
  Static Information Flows Across Domains

Federation

Federation Defined
  Assume there are multiple information enclaves

  Collections of entities that can share information
  Sharing defined as publish / subscribe / query
  Sharing is not uncontrolled

  Policies may regulate access to information

  JBI Perspective
  Information enclave is called an InfoSpace
  No overlap between InfoSpaces

  That is, each client connects to one InfoSpace only

  Examples of InfoSpaces
  Air Operations Center (AOC), Large UAV Platform, J-STARS, etc.

Federation Defined (Continued)
  Enable Interconnection Between Multiple InfoSpaces
  Interconnection is Peer-to-Peer

  No master entity controlling federation
  Federation is controlled independently from the perspective of each

infospace
  Enable Sharing of Metadata / Information Across InfoSpaces

  Seamless subscriptions and queries across infospaces
  Transparency to clients

  Client-Server connections / communication untouched
  Controlled via policies – not unrestricted
  Identity and integrity of individual infospaces preserved

  Efficiency when Handling Subscriptions and Queries
  Criteria: Latency, Bandwidth, Storage, Availability, Resource Utilization

  Policy-based Control over Federation

Federation Architecture

Establishing the Federation

  Two JBIs discover each other and establish federation

  Subscriptions from the subscriber in JBI One are propagated
through the federation and replicated in JBI Two

Publishing Across the Federation

  When a publisher starts in JBI Two, any matching publications
are propagated through the federation and delivered to the
subscriber in JBI One

Expanding Federation and Query

  A new federate (JBI Three) is started and discovered; it
establishes connections with JBI One and JBI Two

  Existing subscriptions from JBI One are replicated in JBI Three
  Query client in JBI Three executes a query and receives MIOs

from JBI One

Changes in Publishers

  The publisher in JBI Two quits, but, in the meantime, the new
publisher in JBI Three has started publishing

  The subscriber in JBI One starts receiving publications from the
new publisher

New Subscriber

  A new subscriber registers in JBI Two
  Its subscriptions are replicated in JBI One and JBI Three
  The new subscriber starts to receive publications from the

publisher in JBI Three

Subscriber Quits And New Query

33 KSCO 2009 Federation Presentation

  The subscriber in JBI One quits
  Its subscriptions are removed from JBI Two and JBI Three
  Since there are no longer any matching subscribers in JBI One, it stops

receiving publications from JBI Three
  The subscriber in JBI Two keeps getting publications
  Query client in JBI One gets combined MIOs from JBI Three and Two

Disconnection of Federate

34 KSCO 2009 Federation Presentation

  Connection to JBI Two is lost
  After a delay if there is no reconnection from JBI Two its

subscription are removed from JBI One and JBI Three
  Publication to JBI Two will stop immediately; in the future we

plan to have store and forward protocol

Policy Management

KAoS at a Glance
  Framework for policy and domain services

  Allows policy-based governance of any aspect of system behavior. Enforces policy
even for buggy, malicious, or non-compliant components

  Easily adapted for any agent, robot, or distributed computing platform
through a Common Services Interface (CSI)

  Uses ontologies for policy, application components, and the real world
  Uses W3C standard OWL, no “proprietary” language
  Optional extensions to OWL expressiveness
  Powerful and extremely efficient reasoning

  Deontic logic by means of description logic
  Incremental (non-monotonic) reasoning through snapshots, untell
  “Compiled” to efficient runtime format so distributed guards continue enforcement

even under disconnected operation

  KPAT: rich ontology-driven GUI for administration
  Kaa: KAoS adjustable autonomy and policy learning

  Probabilistic reasoning about trust issues (e.g., GIG risk-adaptive access control)
  Runtime adaptation of policies based on context-sensitive learning

For more information, see http://ontology.ihmc.us

Conceptual Architecture
  Human interface (KPAT): a point-and-click

graphical interface for policy specification
in the form of natural English
sentences. The vocabulary is
automatically provided from ontology.

  Policy Management representation: is used to
encode and manage policy-related
information in OWL. Inside DS it is used
for policy analysis and deconfliction.

  Policy Decision and Enforcement
representation: KAoS automatically
“compiles” OWL policies to an efficient
lookup format that provides the
grounding of abstract ontology terms,
connecting them to the instances in the
runtime environment and to other policy-
related information. Polices are sent from
DS to Guards, which serve as local
policy decision points.

O
W

L
 P

olicy S
yn

ta
x

E
xa

m
p
le

<?xml version="1.0" ?>
<!DOCTYPE P1 [
 <!ENTITY policy "http://ontology.ihmc.us/Policy.owl#" >
 <!ENTITY action "http://ontology.ihmc.us/Action.owl#" >
 <!ENTITY domains "http://ontology.ihmc.us/ExamplePolicy/Domains.owl#" >
]>

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:owl="http://www.owl.org/2001/03/owl+oil#"
 xmlns:policy="http://ontology.ihmc.us/Policy.owl#"
>
<owl:Ontology rdf:about="">
 <owl:versionInfo>$ http://ontology.ihmc.us/ExamplePolicy/ACP1.owl $</owl:versionInfo>
</owl:Ontology>

<owl:Class rdf:ID="OutsiteArabelloCommunicationAction">
 <owl:intersectionOf rdf:parseType="owl:collection">
 <owl:Class rdf:about="&action;NonEncryptedCommunicationAction" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#performedBy" />
 <owl:toClass rdf:resource="&domains;MembersOfDomainArabello-HQ" />
 </owl:Restriction>
 <owl:Restriction>
 <owl:onProperty rdf:resource="&action;#hasDestination" />
 <owl:toClass rdf:resource="&domains;notMembersOfDomainArabello-HQ" />
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

<policy:NegAuthorizationPolicy rdf:ID="ArabelloCommunicationPolicy1">
 <policy:controls rdf:resource="#OutsiteArabelloCommunicationAction " />
 <policy:hasEnforcementSite rdf:resource="&policy;ActorSite" />
 <policy:hasPriority>10</policy:hasPriority>
 <policy:hasUpdateTimeStamp>446744445544</policy:hasUpdateTimeStamp>
</policy:NegAuthorizationPolicy>

Policy Example:
 Any communication outside the Arabello domain, which is not encrypted is forbidden.

KAoS Guard
•  Where KAoS meets the
application - policy decision
point
•  Policy checking traverses the
policy database in policy
priority order and checks to
see whether the AID is in the
range of actions controlled by
any policy

•  the range of actions
attribute is derived from an
action class controlled by
the policy,
•  role-value map relations,
defining aspects of policy
context, are checked as
well.

Federation Policies
  Federation Acceptance Policies

  E.g., whether to federate, and what priority and resource
privileges should be given the federate

  Gatekeeping Policies
  E.g., access control for a given federate

  Adaptation Policies
  How the federation will adapt if resource requests outstrip

availability

  Contract Policies
  Govern the automated contract negotiation proecess

Conclusions / Future Work

Conclusions / Future Work
  Extending Information Management Capabilities to

Coalitions Would be Valuable
  Multiple roadblocks

  Some policy, some technical

  Technical Solutions Exist that can be Leveraged – Cross
Domain Guard

  But – still need to operate within the restrictive
environment

  Thoughts / Ideas
  Easier to accredit SoA-based approaches (after changes)
  How much flexibility can we have? (Or can we get away with?)

