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Abstract—In this work, we introduce a new approach
for automated risk estimation of source disclosure in
tactical coalition operation environments. Our approach
seeks to mitigate the unintended disclosure of data sources
(i.e. sensors) and sensor capabilities through the selective
release of information to other parties in a tactical net-
work. While the proposed approach can be used for the
automatic filtering of information based on pre-defined
levels of acceptable risk, we introduce an application where
the risk estimation is defined in terms of likelihood of
unintended source disclosure and presented to a human
for decision support.

We experimentally demonstrate our approach on simu-
lated network environments based on military exercises
conducted at the U.S. Army National Training Center.
Our current results were based on a subset of a broader
exercise (161 nodes) with a ratio of approximately 30% of
the nodes representing the sensor field. The results shown
in this paper are focused on risk reduction as a function of
the level of abstraction of the information disclosed, and
assume a fully informed and rational adversary.

I. INTRODUCTION

In mission-critical and tactical operational envi-
ronments, the timely collection, processing and dis-
semination of information is a critical capability and
a differentiating factor for mission success. Gener-
ally, in such environments, information is gathered
from multiple sensor networks highly diverse ca-
pabilities and levels of security classification. Once
fused and classified, the information is then dissemi-
nated to the appropriate interested parties, including
coalition partners and collaborators.

The dissemination of different types of informa-
tion must be regulated and properly constrained,
which is normally done through filters and access
control policies that define which partners or col-
laborators have access to what kind of information.

This is to protect not only access to potentially clas-
sified or restricted information, but also to protect
the presence of classified sensors or capabilities.

While previous research efforts on automated
(or semi-automated) algorithms for information re-
lease have primarily focused on the filtering of
information provided by classified sources (i.e. the
classification of information based on its source),
it is possible that even under the assumption that
such constraints are not violated, the release of any
kind of information may lead to the unintended
disclosure of potentially compromising details about
restricted sensors.

In this work we introduce a new approach de-
signed to estimate the risk of unintended sensor
capability disclosure associated with information
release. The goal is to provide an risk estimate that
can be used by a information manager (human or
software) to quickly determine the help mitigate the
unintended disclosure of data sources (i.e. sensors)
and sensor capabilities through the selective release
of information.

Our focus scenario is a tactical sensor network de-
ployed in a military operational environment where
all challenges associated with node mobility and
dynamic topologies play an important role. We
consider a decision maker in the loop, who can
make determinations about the appropriate release
of information for a given estimated risk. For a
human-in-loop, the estimate risk matrices will be
provided in the form of a table, and for automated
decision processes, the risk can be used as thresh-
olds for different information release rules.

Our review of the related literature focused on the
general methods for privacy preservation and unin-
tended information, although we will also identify



some of the non-filter based strategies for selective
information release. After introducing and describ-
ing our proposed approach, we will demonstrate its
application on synthetically generated datasets for
different network configuration and distribution of
sensors. We also present preliminary results of our
approach on networks created from military exercise
datasets collected from the Army National Training
Center.

Underlying our approach, is a probabilistic es-
timation of risk of information disclosure through
association, assuming a fully informed ‘adversary’.
This is the contribution of our work, and while our
motivating scenario and focus of discussion will
be based on a military operational scenario, the
proposed methodology can be easily extended to
other domains and applications.

II. PROBLEM DESCRIPTION AND MOTIVATION

Let us consider a scenario where some sensors are
deployed in an geographical area. Under a common
administrative domain, the sensor field will collect,
process and distributed tactical information to a
coalition of partners. The sensors may have different
resources, capabilities or levels of classification.
Sensor information is aggregated and used to detect
and identify the classes of targets or entities in the
area.

Let us also, consider that some of these sensors
or their capabilities are classified, and restricted to
a sub-set of the adversaries, or coalition members.
Their presence and/or location cannot be disclosed
to the agents to whom you are providing the infor-
mation to (i.e. soldiers or allies).

The release of information collected by the sen-
sors may unintentionally compromise policies by
unnecessarily disclosing enough information that
would allow an adversary or unauthorized partner
to correctly infer the existence, capabilities and/or
location of the classified sensors. Conversely, the
blocking of critical information to prevent unau-
thorized correlations or inferences could greatly
compromise the mission.

Finding a balance between information release
and capability disclosure is not a simple task, and
often relies in subjective human judgement and
experience. The challenge, however, is further ag-
gravated by the complexity of overlapping and het-

erogenous sensors networks in coalition operations
or adversarial environments. The scale, dynamism
and complexity of such environments often makes
impossible for decision makers to properly estimate
the higher order disclosure effects and risks asso-
ciated with the release of sensor information, even
when properly authorized for the consumer.

In this work, we propose an automated decision
support system for the risk boundary estimation of
unintended sensor capability disclosure. The goal is
to provide human decision makers with worst case
estimates of trade-offs between the level of speci-
ficity in information released to coalition partners,
and the likelihood of sensor capability disclosure.

Our approach leverages our previous work on
distributed resource discovery and data dissemina-
tion infrastructures [1] [2], to automatically build
an maintain a map of the capabilities, resources and
locations of sensors in a complex sensor network.
That information is combined with an ontology
of the military field equipment used to provide a
hierarchical organization of objects in the field and
to offer generalized descriptions of specific entities.

In this paper, we introduce an automatic approach
for sensor disclosure risk estimation. We propose the
automatic construction of a Bayesian Network (BN)
from an equipment ontology and sensor resource
capabilities. The Bayesian Network proposed in this
work will be dynamically updated with changes or
resources or topology in the field, and will be used
both to estimate the disclosure risks associated with
information release, and to recommend generalized
descriptions of objects detected in the field to satisfy
given risk requirements.

III. RELATED WORK

Preserving privacy while revealing information
has been a concern for decades in statistics [3], [4]
and more recently in data mining [5]. In statistics,
this problem has received several names: Statistical
Disclosure Control (SDC) [6], Statistical Disclo-
sure Limitation (SDL) [7] and inference control
[8]. In data mining, this problem is called Privacy
Preserving Data Mining (PPDM) [5]. SDC, SDL
and inference control attempt to control the risk of
disclosure of information about specific individuals
from statistical summary results or aggregates. SDC
has developed theories that attempt to characterize



the trade off between privacy and usability of sta-
tistical databases, and it has found boundaries for
the minimum level of noise required to ensure a
minimum level of privacy [9], [10].

PPDM attempts to develop algorithms and tech-
niques for extracting knowledge from large amounts
of data while protecting sensitive information.
PPDM has developed some techniques and defini-
tions of what composes a privacy preserving disclo-
sure of information. PPDM mainly focuses in two
aspects of information disclosure: disclosing data to
be used by data mining algorithms (also known as
microdata), and disclosing results of data mining
algorithms, also known as aggregates. PPDM has
develop definitions for privacy requirements when
publishing microdata (k-anonymity [11], `-diversity
[12], t-closeness [13] and m-invariance [14]). And
it has also created metrics for quantifying the pro-
tection provided, the failure to hide and the data
quality of different privacy preserving data mining
algorithms [15], [16].

In the context of the present paper, we are
interested on privacy protection when disclosing
aggregates. An attacker using information from
aggregates might be able to create an inference
channel that could allow him/her to determine the
identity of individuals [17]. We propose using a
BN for aggregating the measurements from different
sensors to infer the presence of an entity, and also
to assess the risk of disclosing the presence of
those sensors by disclosing the presence of the
inferred entity. In [18], the authors also propose
using a BN for disclosure control, in the context of
query restriction through auditing. The BN is used
for representing the user’s knowledge about private
associations in the data after a sequence of min and
max queries, this is, queries about the minimum
and maximum elements of a subset of the database.
Then, after making probabilistic inferences on the
BN, the auditor of the database decides whether or
not to answer the query, if it is determined that
responding the query creates a privacy breach.

In [9] and [10], the authors found theoretical
boundaries for the level of noise that needs to be
added to the results when the results are represented
as sums of the entries in the database. They define a
statistical database as a query-response mechanism
that allows users to access its content via statistical

queries. They focus on binary databases, where the
content consists of n binary entries. A statistical
query on the database specifies a subset of those
entries, and the answer is the number of entries
having value 1 among the entries specified in the
query. Before returning the answer to the user, the
result is perturbed by a database curator that will
add some noise to the result. In this scenario, the
main question is how much noise needs to be added
to the results from the queries so an attacker cannot
reconstruct most of the database.

In [9], the authors showed that a polynomial
adversary, this is, an adversary that can make a
polynomial number of queries to the database (poly-
nomial in relation to the size of the database), can
potentially reconstruct most of the database, if the
perturbation of the results is lower than Ω(

√
n). The

strategy consists on finding the candidate bit string
that minimizes the error for all the results already
returned by the database. In [10], the authors go
even further, and propose an algorithm that requires
only a fixed number of queries for each bit revealed.

The problem of disclosure control proposed in
the present paper can be partially modeled by the
representation proposed in [9], [10]. The bits in the
database could represent the presence or absence
of a sensor in the terrain. The attacker should try
then to determine this sequence of bits. The main
difference is that queries performed in the database
cannot be modeled as sums of bits, but instead as
an inference performed with those sensors. It is still
an open question to us, if the polynomial adversary
proposed in [9] can also be used in this scenario. It
is still unclear to us if the assumptions needed for
the proof of the algorithm, also apply in this new
scenario.

The notion of disturbance in the results proposed
here is different from the one proposed in [9], [10].
While in [9], [10] models the disturbances as noise
added to the response, here we propose modeling
the disturbance as providing a more general answer
to the user, which even being a more general answer
is still a correct answer.

IV. PROPOSED APPROACH

Our approach will be based the automatic con-
struction of a Bayesian Network (BN) from sensor



information collected form the field, and target de-
scriptions that can be used to abstract and generalize
target detections. The BN, in our approach, is used
for both to classify a target given signal provided
by multiple sensors, and also to assess the risk of
sensor exposure by disclosing the target informa-
tion. Furthermore, the same model can be used to
propose alternative descriptions (generalizations) of
the target to reduce the risks associated with sensor
exposure.

A Bayesian Network is a directed acyclic graph
where nodes represent variables and links represent
dependency relationships among the variables. Each
node is annotated with a conditional probability
table or distribution for the values of the node given
the values of its parent nodes.

The relationships in a BN follow a special prop-
erty known as the Markov condition, which states
that a node’s probability distribution is independent
of its non-descendant nodes given its parents. The
Markov condition is essential for performing effi-
cient inferences in a BN, because it allows to exploit
the conditional independencies between the nodes to
avoid calculating unnecessary relations.

The BN that will be used has 3 types of nodes:
entities, features and sensors. All nodes are binary,
meaning that they can only take on two values:
true or false. The entities are nodes representing
the objects being discovered by the sensors. One or
multiple ontologies will be used for the representing
the entities and the relationships between them
(Figure 1). There will be a link from any sub class
entity to its super class entity, as expressed by the
ontology.

Entities will have descriptive features that may
or may not be unique to that entity. To represent
this relationship, there will be a link from entities
to the features that they posses. Features can also be
arranged in ontologies, where there are links from a
more specific feature to a more general feature that
includes it. For example the feature known as heavy
will have a link to the feature known as weight.

A feature can be measured by one or more
sensors. To represent this relationship, there will be
a link from features to the sensors that measure the
feature. Nothing precludes a sensors from sensing
multiple features. Sensors do not form an ontology
among themselves. Figure 2 shows an example of a

Fig. 2. Example of BN with entities, features, and sensors.

BN with entities, features and sensors.
For computing the probability tables in the BN, a

model known as the Noisy OR-Gate Model [19, p.
158] will be used. In the Noisy OR-Gate Model, the
relationships in the BN are considered to represent
causal mechanisms. So, if all of the parents of a
node have the value false, then the node will also
get the value false. But it at least one of the parents
has the value true, then the node might get activated
depending on the strength of the relationship with
the active parent. That is why it is called a Noisy-
OR Gate model, because it resembles the behavior
of an OR Gate.

By default, all relationships among the nodes
from the ontologies are considered deterministic,
this is, they have a probability of 1, meaning that if
the entity is of certain type, then with probability 1,
the node is also of the type of the super class node,
in the ontology. But nothing precludes the use of
different probability values.

Using the Noisy-OR gate model, the probability
of a node being true given its active parents is
determined by the following formula:

P (n = true|p1, . . . , pm) =

1−
∏
pj∈A

[
1− P (n = true|pj = true)

]
, (1)

where P (n = true|pj = true) is the strength of
the link going from pj to n, and A is the set of



Fig. 1. Example of Military Equipment Ontology (ground vehicles only).

active parents, this is, the set of parent nodes that
have a value equal to true.

For every node in the BN, that it is a root node
(node that does not have any parents) the probability
of having the value true is by default 0.5. But it can
be easily allowed to modify these prior probabilities
to impose certain beliefs or prior knowledge.

Finally, entity nodes have an inhibitory mecha-
nism in their probability tables. If there is already
another entity with a value true that is not a descen-
dant or an ancestor of the entity, then the value for
the entity must be false, because, there could only
be a single object being observed or inferred at the
same time.

V. INFERENCE

The algorithm that will be use for inference in the
resulting Bayesian Network is called Logic Sam-
pling [19, p. 210]. This algorithm is an approximate
inference algorithm for Bayesian Networks, that
uses simulation for calculating an estimate of the
probability of the variables given some evidence.
Algorithm 1 shows the pseudo-code of the logic

sampling algorithm.
The general idea behind logic sampling consists

of setting the values of the observed variables ac-
cording to the evidence, and then generating several
times the values for the remaining variables (the un-
observed variables) with a pseudo random number
generator using the conditional probability table for
each variable. Then, for each unobserved variable, a
ratio is calculated for each of its values, by dividing
the number samples for which the variable took each
value by the total number of samples.

The main type of inferencing that will be done on
the BN will consist of determining what entity or
entities can be inferred given an evidence provided
by some sensors. For example, consider the evi-
dence shown in figure 3. This evidence tells us that
two sensors detected features. Sensor P detected the
feature Weight and sensor s1 detected the feature
Sig2. After running the inference algorithm we
can say that the object that activated the sensors
is a Car. We could also say that the object is a
Light V ehicle or a V ehicle (Figure 4).

It is important to consider here that we might



Input: N (Nodes in the Bayesian Network in
ancestral ordering)

Input: n (Number of nodes in N )
Input: A (set of nodes A ⊆ N with the

evidence)
Input: m (number of samples for the

simulation)
c[1 . . . n]← 0 ;
for r ← 1; r ≤ m; r ← r + 1 do

s[1 . . . n]← false ;
j ← 1;
while j < n do

pa(j)← {(N [i], s[i]) :
N [i] is parent of N [j]} ;
if random ([0, 1]) ≤ P (N [j]|pa(j))
then

s[j]← true;
end
if N [j] ∈ A ∧ s[j] = false then

j = 1;
else

j + +;
end

end
for i← 1; i ≤ n; i← i + 1 do

if s[i] = true then
c[i]← c[i] + 1;

end
end

end
P [1 . . . n]← 0;
for i← 1; i ≤ n; i← i + 1 do

P [i]← c[i]
m

;
end
return P

Algorithm 1: Logic Sampling

also feed the inference algorithm with negative
information, this is, information about the sensors
that did not activate. Using this information could
give us more accurate inferences, but as we really
do not know if the sensor did not activate because
the object did not have a feature that can be detected
by the sensor, or simply because the object is out of
range from the sensor, then this type of information
is not reliable. So from know on, we will consider
that all evidence will only come from sensors that

Fig. 3. Example of BN with evidence entered.

Fig. 4. Example of BN with inference results.

activated. But the algorithms could easily be ex-
tended to use negative information.

VI. RISK ASSESSMENT

After determining the type of object being ob-
served using the evidence provided by the sensors,
we need to asses the risk of disclosing this infor-
mation, in case that one or more of the sensors
in use is a classified sensor. Assessing the risk,



here means assessing the probability of disclosing
the existence and/or location of a classified sensors
that are on the field after disclosing the existence
of an object detected by the sensors. The proposed
approach for assessing this risk consists of finding
all the combinations of sensors that would allow
to detect the entity being disclosed, and then com-
puting the conditional probability of the classified
sensors across all the combinations.

We will call a Entity Detection Sensor (EDS) set,
a set of sensors that are able to detect together a
given entity. For example, in the BN from figure
2, sensors P and s1 form an EDS set for entity
Car. But for assessing the risk we are not interested
on all EDS sets, but only on the minimum Entity
Detection Sensor (mEDS) sets, which are EDS sets
that do not have a proper subset that is also an EDS
set for the same entity. The reason for this is that
once we find an mEDS set, then any other set that
includes all the sensors in the mEDS set will also
be able to detect the entity. This definition will not
only provide more accurate measurements of risk,
but will also reduce the search space.

Algorithm 2 finds the mEDS sets for a given
entity. This algorithm first runs an inference using
as evidence the entity e being disclosed, and creates
a set F with all the features that get activated for
this inference. The activation is determined by a
threshold t that is passed to the algorithm. Then
using this set, we construct another set S with all
the sensors that can detect this features.

Then iterating over the power set of S, and
inference is done using each combination of sensors
for each of the respective features that they measure.
If for any of the combinations, the probability of
the entity e is higher than the threshold t, then this
combination of sensors is added to the list of mEDS
sets for the entity. A very important feature of the
algorithm is that it explores the power set space
increasingly, first trying subsets with 1 element, then
subsets with 2 elements, etc. This approach helps
to reduce the search space when the mEDS sets are
small. The worst case occurs when all sensors are
needed, in which case the number of combinations
explored is O(2n), being n the number of sensors.
Applying the algorithm over the BN of figure 2 with
entity Car produces the following list of mEDS
sets: {P, s1}, {P, s6}, {W, s1} and {W, s6}. In this

case the risk of each of this sensors is easy to
compute, since each of them occur in two of the
mEDS sets, so the risk is 50%.

Algorithm 2 does not consider the mEDS sets for
sub classes of the entity in the ontology. This is not
important when searching for the mEDS sets for
an entity with no sub classes, like for example, for
entity Car in figure 2, but it is important for entities
that have sub classes, because when assessing the
risk, we need to consider that the recipient of the
information might suspect that the reason why we
are disclosing a more general piece of information
is for hiding the existence of a classified sensor,
so, he/she will try to explore the mEDS sets for all
sub classes of the entity that we provided. A simple
modification of the algorithm, that recursively iter-
ates over the sub classes will provide the complete
set of mEDS sets needed for assessing the risk.
Applying this modified version of the algorithm
over the BN of figure 2 with entity Light V ehicle
produces the following list of mEDS sets: {P, s1},
{P, s2}, {P, s3}, {P, s6}, {W}, {W, s1}, {W, s2},
{W, s3} and {W, s6}. In this case, the risk for some
sensors s1 and s6 decreases to 22%, and for sensor
P decreases to 44%, while the risk for sensor W
increases to 56%.

VII. EVALUATION

To validate the hypothesis that a more generalized
description of entities (based on the ontology hierar-
chy) will help reduce the risk of unintended sensor
information, we randomly generated some networks
of different sizes, and for each of those networks we
assessed the risk of disclosing each of the entities
that have no sub classes. Then we assessed the risk
of each of the immediate super classes. Finally, we
subtracted the risk for each sensor when providing
more general information from the risk for the same
sensor when providing more specific information.
Averaging these differences across all cases, we
checked if our proposed heuristic is statistically
valid.

Under the null hypothesis of no risk reduction
occur, the average of the computed differences
(i.e. entity disclosure risks, and immediate parent
description disclosure risk) should be close to zero.
Rejecting the null hypothesis would tell us that the
differences are not zero, which could be good or bad



Input: N (ASP Network)
Input: e (Entity to be disclosed)
Input: t (Activation threshold)
P ← DoInference(N, {(e, true)});
F ← {f : f is feature ∧ P [f ] ≥ t};
S ← {s : s is sensor ∧ ∃f ∈ F (s detects f)};
F [s ∈ S]← {f : f ∈ F ∧ s ∈ S ∧ s detects f};
mEDS ← {};
/* 2S is the power set of S */
for C ∈ 2S do

indexes[1 . . . |C|]← 0;
i← 1;
while C /∈ mEDS ∧ i ≥ 1 do

indexes[i]← indexes[i] + 1;
if indexes[i] ≥ max(1, |F [C[i]]|) then

indexes[i]← 0;
i← i− 1;

else
if i = |C| then

E ← {};
for j ∈ {1 . . . |C|} do

s← C[j];
E ← E

⋃
{(s, true)};

f ← F [s];
if indexes[j] ≤ |f | then

E ←
E
⋃
{(f [indexes[j]], true)};

end
end
P ← DoInference(N,E);
if P (e) ≥ t then

mEDS ← mEDS
⋃
{C};

end
else

i← i + 1;
end

end
end

end
return mEDS

Algorithm 2: Minimum Entity Detection Sensor
(mEDS) sets search

depending on which direction the risk moves. What
we are really looking for is a positive difference,
meaning that the risk of providing more general
information is lower than the risk of providing more
specific information.

Computing the differences for each sensor on
each risk assessment result provided us 574 different
data points. The average value is 0.3092819, and the
variance is 0.06492386. Performing a t test over the
data gives a p-value which is smaller than 2.2e−16.

Based on the calculated p-value we can reject
the null hypothesis and claim that, on average,
the results support the hypothesis that providing
more general information about a target will help
protect the disclosure of its information sources. It
is important to note that these results are dependent
on the structure of the ontologies or equipment and
features used for our analysis. Our decision support
system will only proceed with recommendation to
a user if there is statistical support for the proposed
underlying hypothesis described here.

The algorithms were also tested on networks cre-
ated using a subset from military exercise datasets
collected from the Army National Training Center.
The subset consists of 161 nodes, where 51 nodes
were selected as sensors and the remaining 110
nodes were selected as entities. The 51 sensor nodes
were grouped into 18 different sensor types, and the
110 entity nodes were also grouped in an ontology
containing 63 nodes.

Table I shows the results for the risk assessment
algorithm over 3 different entities in the scenario.
Each row in the table shows the risk assessment for
each of the 18 sensor types in the scenario. For each
entity the risk assessment was performed over the
entity type itself and over the parent entity and the
parent’s parent entity. Their respective results are
arranged in this same order.

The parent of entity type P07 is P0 and the parent
of entity type P0 is entity P. A first observation
to be made on these results is that moving up
in the ontology only helps to reduce the risk of
the sensors involved in discovering the lower level
entity type. For example, sensor SNH has zero risk
when discovering an entity of type P07, but it has
a risk of 36% when discovering entities of the
higher level type P. This behavior is just a direct
consequence of the approach, which is, that the



Sensor Entity
P07 P0 P P82 P8 P 4UZ 4U 4

SEH 14.3% 12.5% 8.0% 33.3% 33.3% 8.0% 18.2% 18.2% 17.0%
SQ3IR 14.3% 12.5% 24.0% 33.3% 33.3% 24.0% 36.4% 36.4% 22.6%
SEC 14.3% 12.5% 4.0% 0.0% 0.0% 4.0% 18.2% 18.2% 11.3%
SNH 0.0% 0.0% 36.0% 0.0% 0.0% 36.0% 100.0% 100.0% 52.8%
SW 0.0% 0.0% 12.0% 0.0% 0.0% 12.0% 0.0% 0.0% 7.6%
SQ5 14.3% 12.5% 4.0% 0.0% 0.0% 4.0% 9.1% 9.1% 22.6%
SNU 100.0% 87.5% 48.0% 0.0% 0.0% 48.0% 0.0% 0.0% 3.8%
SN8 0.0% 12.5% 4.0% 0.0% 0.0% 4.0% 0.0% 0.0% 0.0%
SW0 0.0% 0.0% 24.0% 100.0% 100.0% 24.0% 0.0% 0.0% 7.6%
SEY2 14.3% 12.5% 4.0% 0.0% 0.0% 4.0% 27.3% 27.3% 11.3%
SN9 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0%
SN90 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.0%
SW3 0.0% 12.5% 12.0% 0.0% 0.0% 12.0% 0.0% 0.0% 15.1%
SQ3I6 57.1% 50.0% 56.0% 33.3% 33.3% 56.0% 36.4% 36.4% 22.6%
SWP 0.0% 0.0% 12.0% 0.0% 0.0% 12.0% 0.0% 0.0% 17.0%
SEYO 57.1% 50.0% 16.0% 0.0% 0.0% 16.0% 36.4% 36.4% 37.7%
SWN 0.0% 0.0% 12.0% 0.0% 0.0% 12.0% 0.0% 0.0% 9.4%
SQ3Z 14.3% 12.5% 4.0% 0.0% 0.0% 4.0% 18.2% 18.2% 20.8%

TABLE I
RISK ASSESSMENT FOR SUBSET OF FOR THE ARMY NATIONAL TRAINING CENTER MILITARY EXERCISE SCENARIO.

reason why other sensors get their disclosure risk
reduced is because other sensors are added into the
mix.

Let us consider, for each entity, the sensors that
have a disclosure probability risk greater than zero
for the lower level entity, the cells highlighted in
black show reductions in the risk, while cells high-
lighted in gray show increased risk of disclosure.

It is important to notice that under some con-
ditions (gray cells) there is an increase in sensor
disclosure risk for less specific entity descriptions
(see, for example sensor SQ5, for entity 4 in the last
column). It is also possible that an increase in risk
may occur after a decrease in risk has been observed
for the same entity hierarchy (see, or example,
sensor SQ3IR, for entities P07, P0, P).

This behavior is consistent with the fact that some
sensors detect more general features, that is, features
that are present in more general entities. Specialized
sensors allow to effectively detect very specific
features. As we generalize the description of some
entities the value of specialized features diminish
in comparison with more general features, which
could lead to the increase of probability disclosure
of more general sensors. In general, however, more
abstract features are detected by a greater number
of sensors which should compensate for the effects
in most (but not all) cases. In the counter examples

shown in table I, the sensors that measure more gen-
eral features start gaining relevance in comparison
with more specific sensors and their likelihood of
disclosure increases.

VIII. CONCLUSIONS AND FUTURE WORK

Intuitively, providing a more general and vague
information about a given target should help to
protect the sources of the information that made
the target detection (and identification inference)
possible. The approach proposed in this work builds
on such intuition to quantitatively estimate the risk
of source disclosure as a function of information
release.

Our experimental results showed that most often,
a small generalization of the target description may
yield a significant risk reduction for unintended
sensor information disclosure. Furthermore, we have
illustrated that such gains can be quantified as prob-
ability of unintended disclosure per sensor, under
the worst-case assumption of a fully informed and
rational adversary. This information could provide
valuable run-time insight to a human operation for
information release decision support.

However, we have also noted in our results that
while the hypothesis is often true, that is not always
the case. There are conditions in which a more
general description of a target may in fact, increase



the probability of disclosure of unintended sensors.
As discussed in our analysis, such cases are due to
the uneven distribution of feature detection capabil-
ities between different sensors and different levels
of target abstraction. However, even in such cases,
the proposed risk assessment framework properly
indicated the risks associated with each level of
abstraction, recommending the release of the appro-
priate description.

The quantitative estimate of disclosure risk can
provide human operators with a reference for deci-
sion making. That information could be taken into
account with other mission-level requirement and
operational contexts to help support a decision for
which level of detail to be released for different
conditions. The experimental results shown in this
paper were obtained by running the algorithms
several times over small sections of a simulated net-
work environment based on actual troop movements
for exercises conducted at the US Army National
Training Center.

Our approach relies on there critical pieces for
information for analysis. a) the network topology
including sensor location, descriptions and capabil-
ities, b) an ontology describing the hierarchy of
classes for the entities being tracked or monitored
by the sensor field (the military vehicle ontology,
in our example), and c) the correlations among the
ontologies for entities and ontologies for entity fea-
tures. Network topology and sensor details can be
efficiently discovered using cross-layer monitoring
infrastructures, as we have shown in our previous
work. The second and third requirements are also
very realistic and should not represent a limitation
to our approach.

As part of our continued research in this domain,
we will investigate new methods to improving the
efficiency of the proposed algorithms for large scale
problems. We are currently exploring several heuris-
tics that can be applied to simplify the problem
including temporal and spatial associations between
events, and the introduction of higher level policies
for information release, which could help prevent
the exploration of solutions in prohibited spaces.
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