Honeywell Laboratories

Honeywell Laboratories

Outline

- Problem overview: Coordinators, C-TAEMS.
 - Relationship to prior talks:
 - Distributed coordination of teams.
 - Dynamic changes, on-the-fly replanning.
 - Things that are connected in plans are Nodes (for Austin!)
- Agent design overview.
- Mapping single-agent task models to MDPs.
- Achieving inter-agent coordination.
- Lessons and future directions.

Motivating Problem

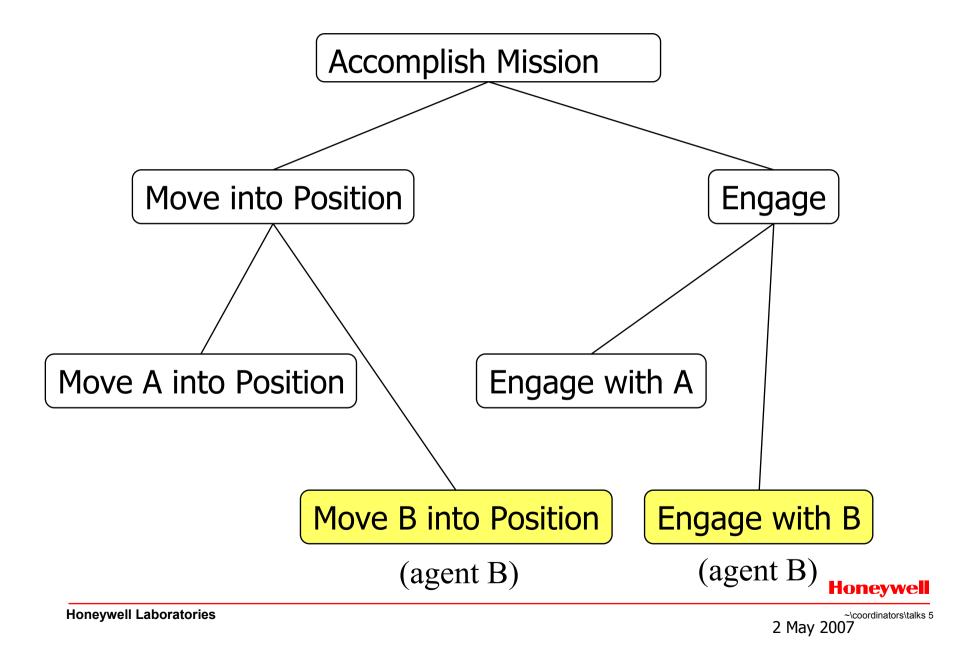
- Coordination of mission-oriented human teams, at various scales.
 - First responders (e.g., firefighters).
 - Soldiers.
- Distributed, multi-player missions.
- Complex interactions between tasks.
- Uncertainty in task models both duration and outcome.
- Dynamic changes in tasks: unmodeled uncertainty, new tasks.
 - \rightarrow Highly contingent plans = policies.
 - \rightarrow More powerful representation than current military plans.
- Real-time.
- Challenge: the right tasks done by the right people at the right time.

Honeywell Laboratories

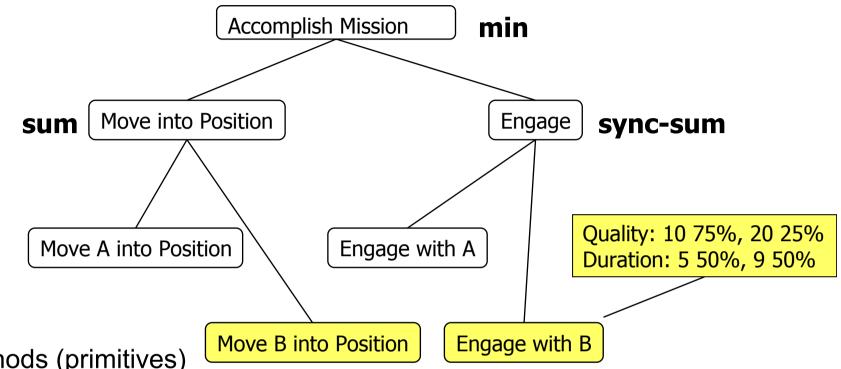
CTAEMS- A Language and Testbed

- CTAEMS is a hierarchical task model used by the Coordinators program.
- Stresses reasoning about the *interactions* between tasks and about the *quality* of solutions.
- There is no explicit representation of world state, unlike conventional plan representations.

CTAEMS Includes Task Decomposition



Modeled Uncertainty & Quality Accumulation

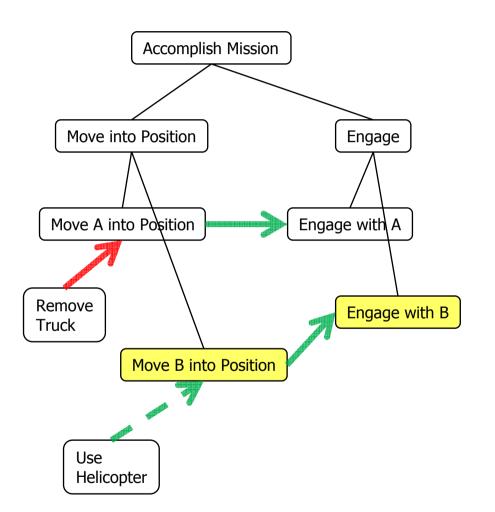


- Methods (primitives)
 - are temporally-extended, with deadlines and release times;
 - are stochastic, with multiple outcomes.
 - Each agent can perform only one at a time.
- *Tasks* have *QAFs* used to roll-up quality from children.
- Root node quality is overall utility.

Honeywell

Non-local Effects (NLEs)

- Non-local effects (NLEs) are edges between nodes in the task net.
- The quality of the source node will affect the target node.
- NLEs can be positive or negative and qualitative or quantitative:
 - Enablement, disablement, facilitation or hindering.
- These effects can also be *delayed*.

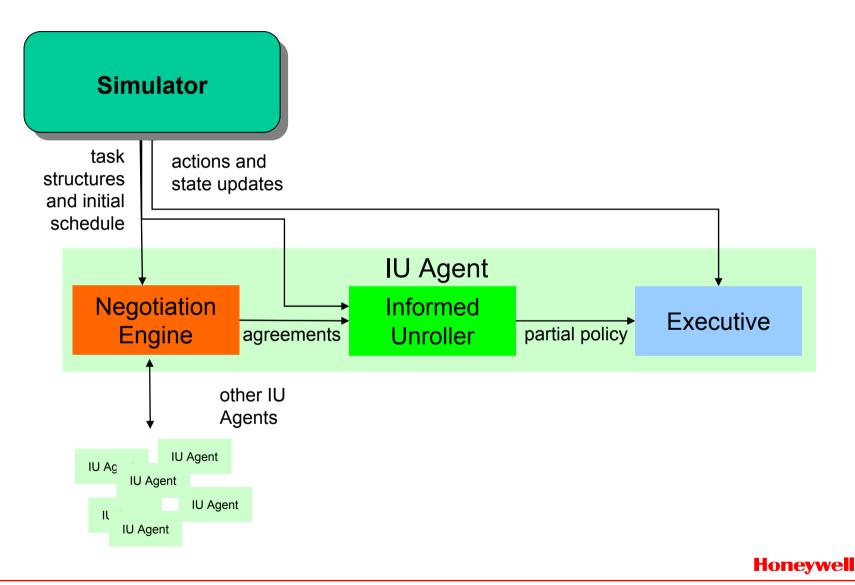


Honeywell

Approach Overview

- "Unroll" compact CTAEMS task model into possible futures (states) in a probabilistic state machine – a Markov Decision Process.
- MDPs provide a rigorous foundation for planning that considers uncertainty and quantitative reward (quality).
 - State machines with reward model, uncertain actions.
 - Goal is to maximize expected utility.
 - Solutions are *policies* that assign actions to every reachable state.
- Distribution is fairly new: single-agent MDPs must be adapted to reason about multi-agent coordination.
- Also, CTAEMS domains present the possibility of meta-TAEMS task model changes and un-modeled failures.
- Honeywell's IU-Agent addresses these concerns (partly).

IU Agent Architecture

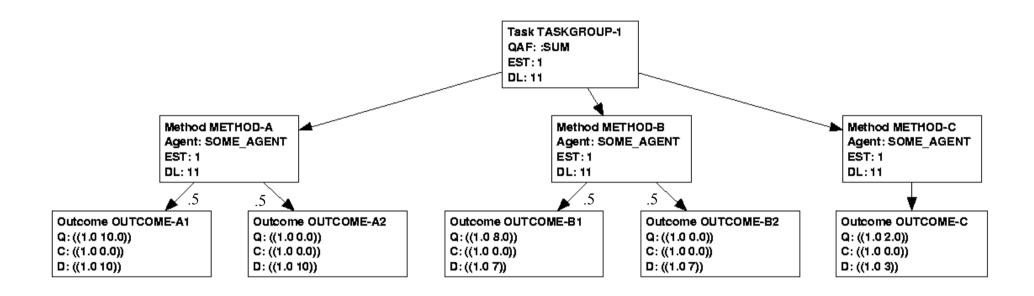


Honeywell Laboratories

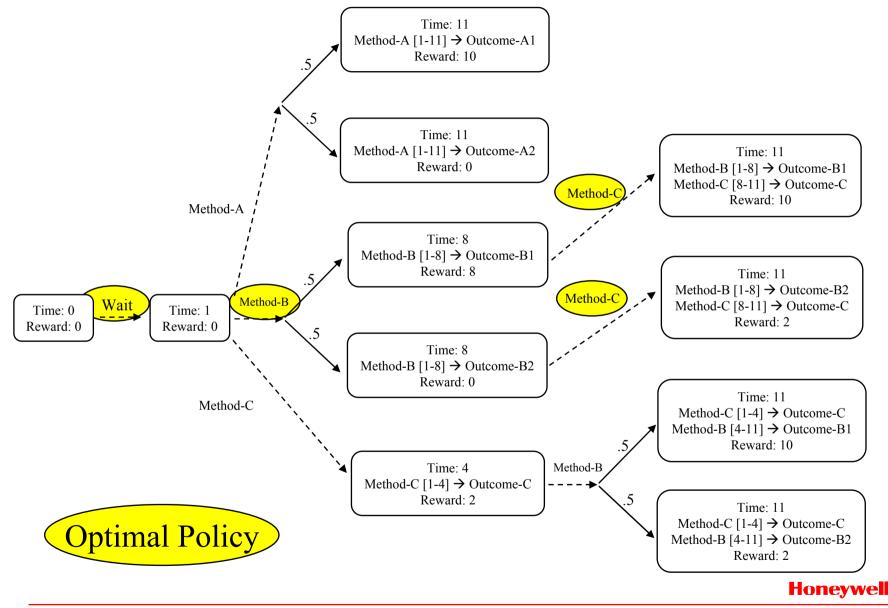
Mapping TAEMS to MDPs

- MDP states represent possible future states of the world, where some methods have been executed and resulted in various outcomes.
- To achieve the Markov property, states will represent:
 - The current time.
 - -What methods have been executed, and their outcomes.
- Actions in the MDP will correspond to method choices.
- The transition model will represent the possible outcomes for each method.
- For efficiency, many states with just time-increment differences are omitted (no loss of precision).
- We also currently omit 'abort' action choice at all times except method deadline.
 Honeywell

Simple Single-Agent TAEMS Problem

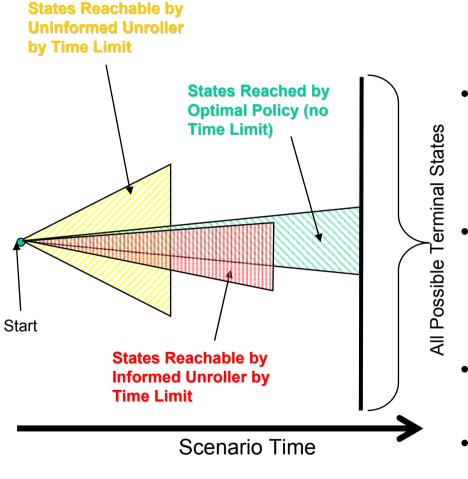


Unrolled MDP



Honeywell Laboratories

Informed (Directed) MDP Unroller



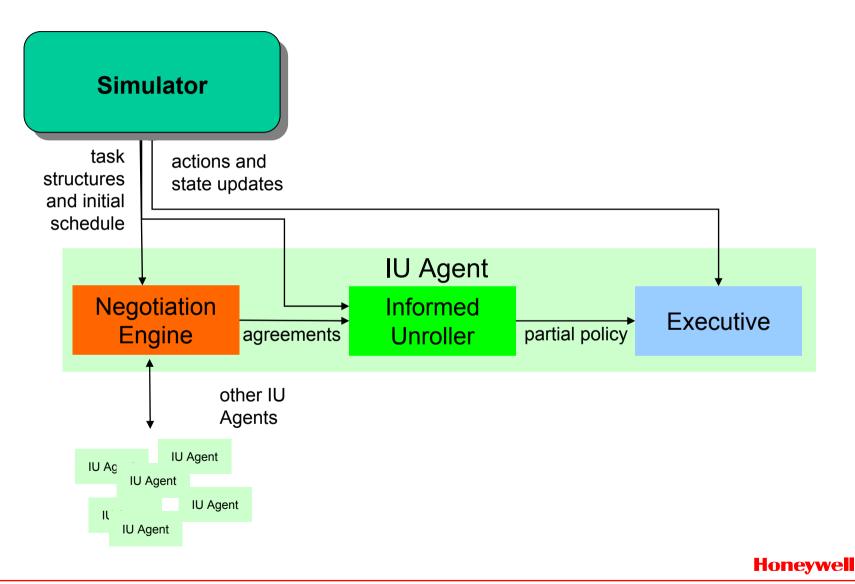
- Formulating real-world problems in an MDP framework often lead to a large state spaces.
- When computational capability is limited, we might be unable to explore the entire state space of an MDP.
- The decision about the subset of an MDP state space to be explored ("unrolled") affects the quality of the policy.
- Uninformed exploration can unroll to a particular time horizon.
- Informed exploration biases expansion towards states that are believed to lie along trajectories of high-quality policies.

Steering Local MDPs Towards Inter-Agent Coordination

- MDPs require reward model to optimize.
- Assume local quality is a reasonable approximation to global quality.
 - This is not necessarily true.
 - In fact, some structures in CTAEMS make this dramatically incorrect.
 - E.g., SYNCSUM; semantics of surprise.
- Use communication to construct agreements over commitments.
- Use commitments to bias local MDP model to align local quality measures with global.

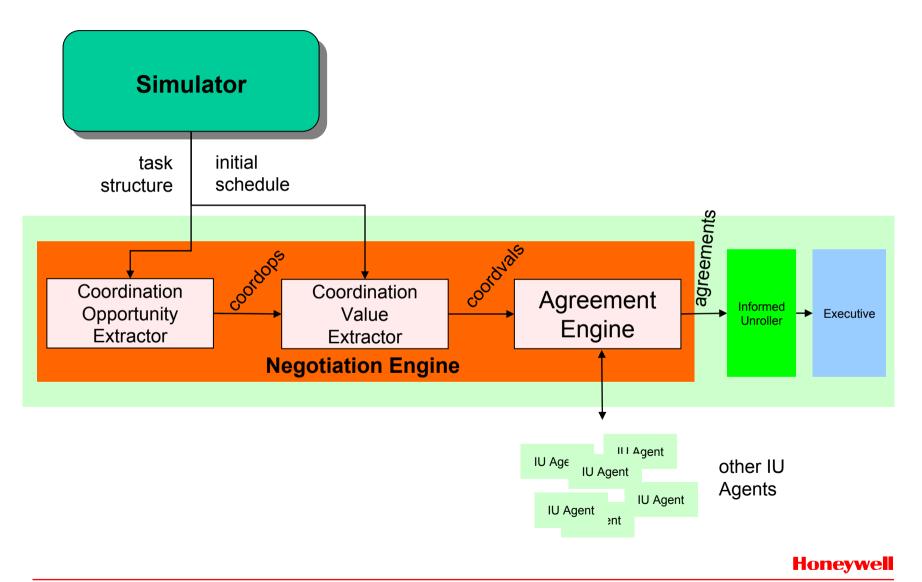
Honeywell Laboratories

IU Agent Architecture



Honeywell Laboratories

Negotiation Engine



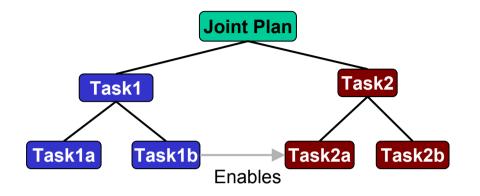
Honeywell Laboratories

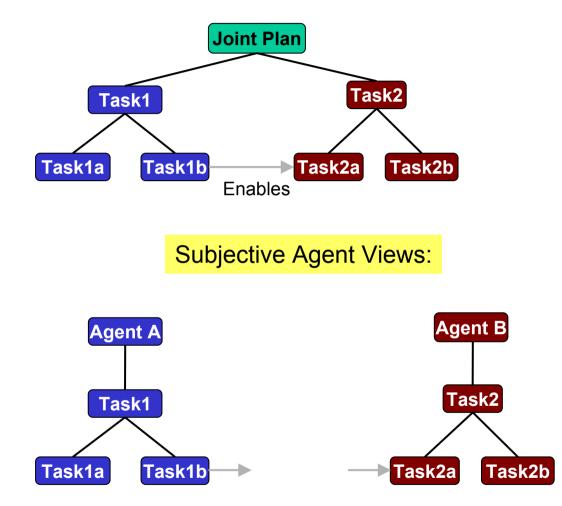
IU-Agent Control Flow Outline

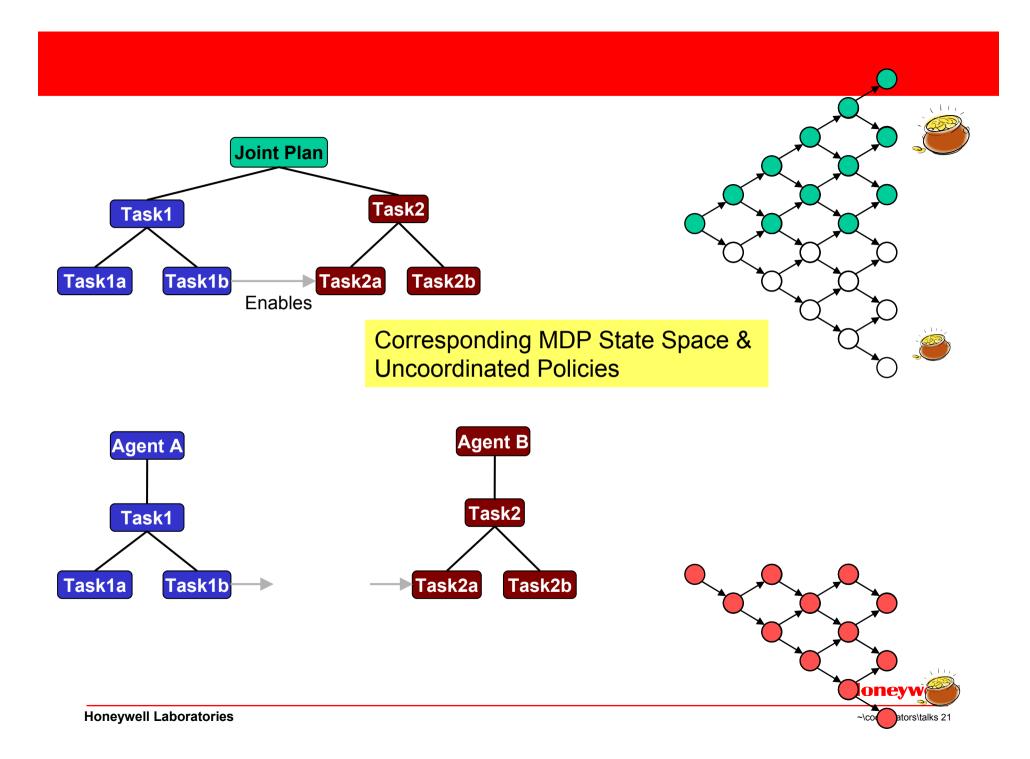
- Coordination opportunities identified in local TAEMS model (subjective view).
- Initial coordination value expectations derived from initial schedule.
- Communication establishes agreements over coordination values.
- Coordination values used to manipulate subjective view and MDP unroller, to bias towards solutions that meet commitments.
- Unroller runs until first method can be started. Derives partial policy.
- Executive runs MDP policy.
- If agent gets confused or falls off MDP, enters greedy mode.

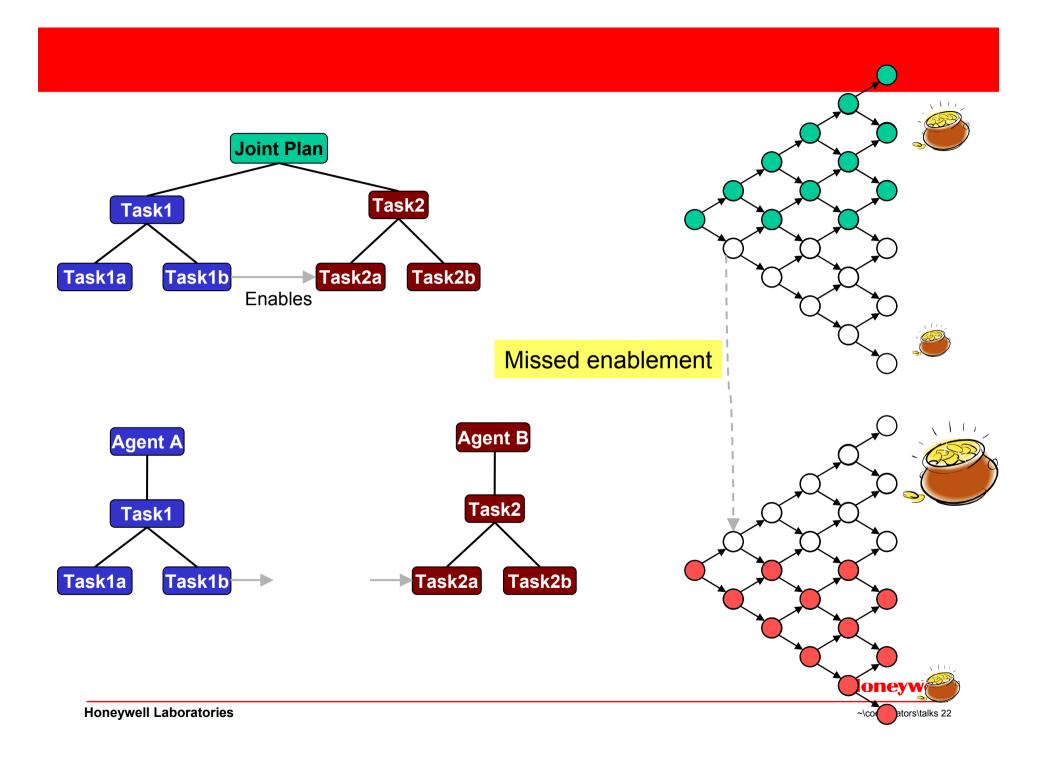
Steering MDP Policy Construction Towards Coordination

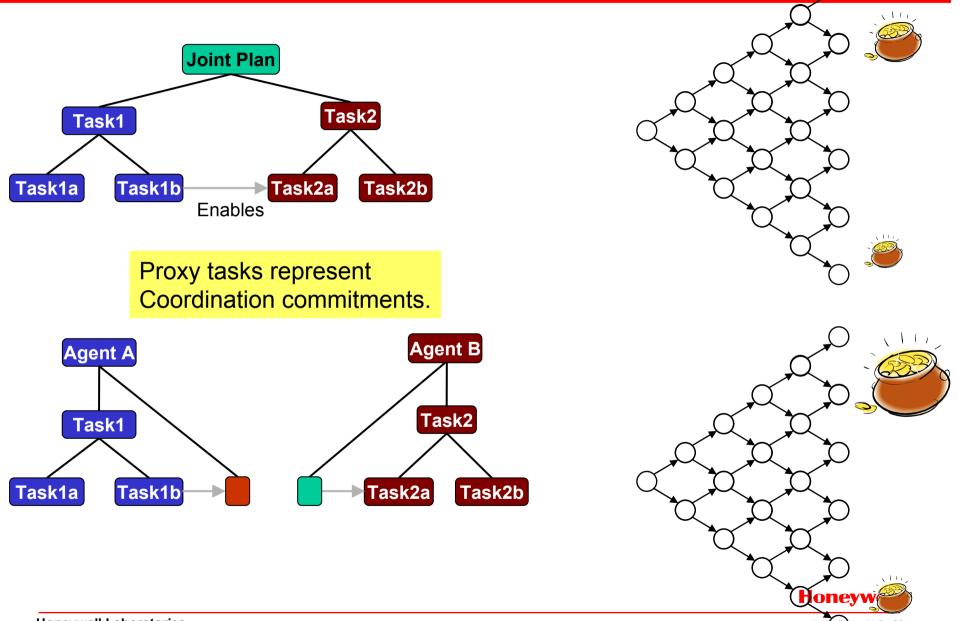
- Two primary ways of guiding MDP policies:
 - Additional reward or penalty attached to states with a specific property (e.g., achievement of quality in an enabling method by a specified deadline).
 - "Nonlocal" proxy methods representing the committed actions of others (e.g., synchronized start times).



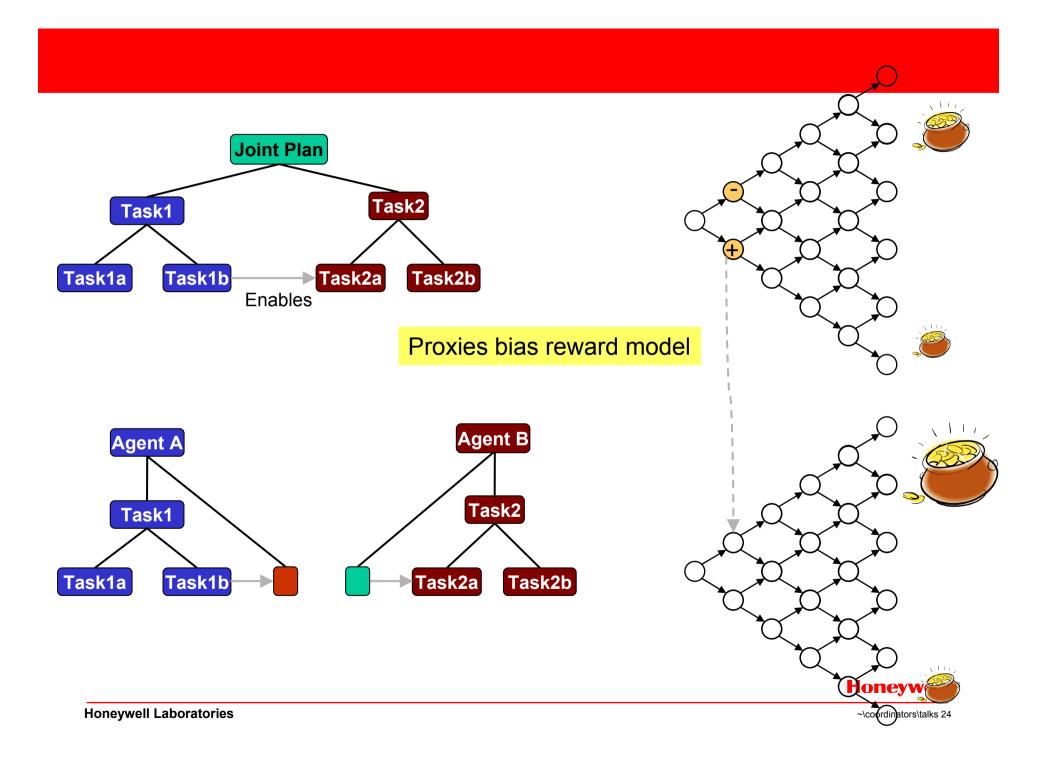


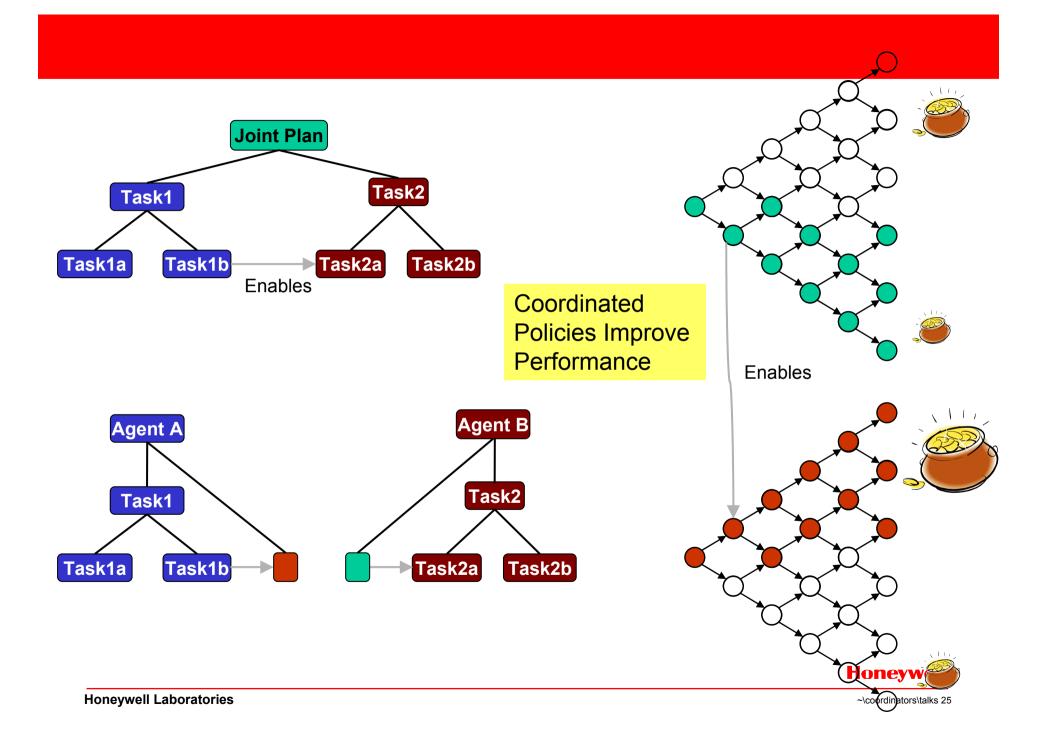






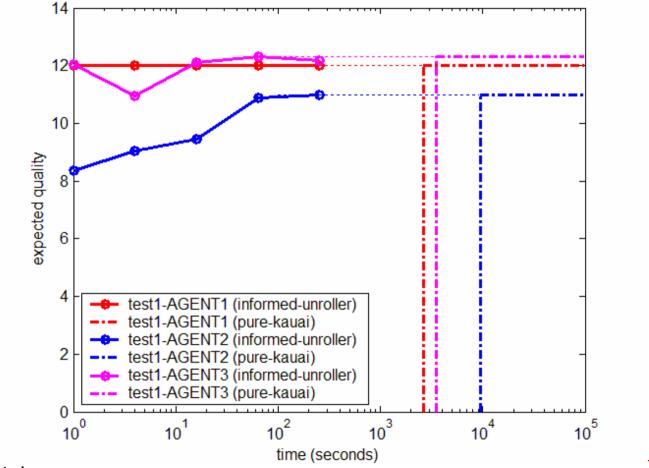
Honeywell Laboratories





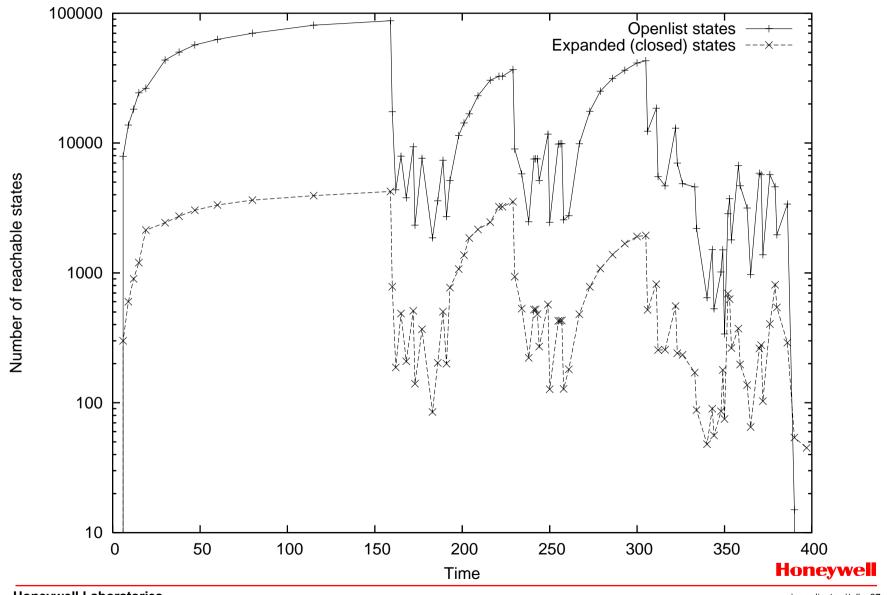
Informed Unroller Performance

- Anytime.
- Converges to optimal complete policy.
- Can capture bulk of quality with much less thinking.



Honeywell Laboratories

Honeywell

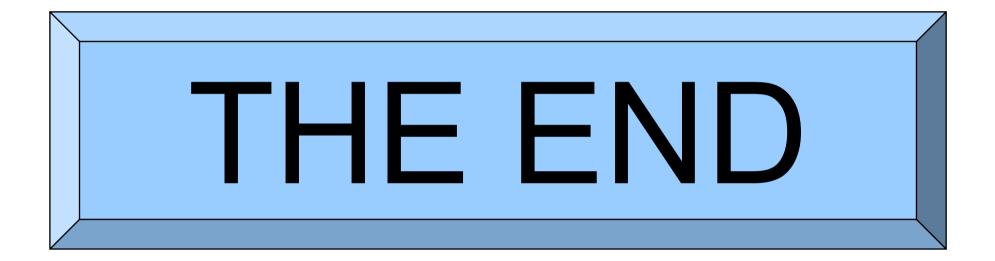


Honeywell Laboratories

Lessons and Future Directions

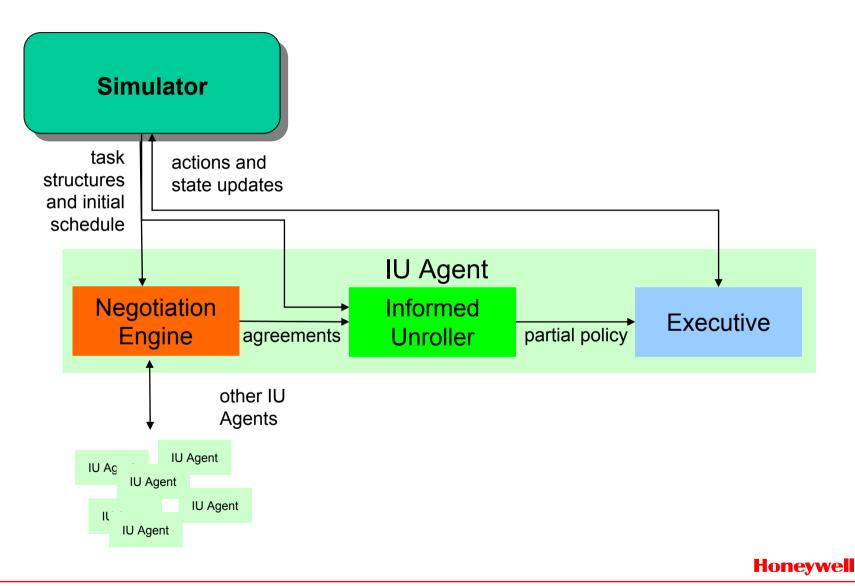
- Integration of the deliberative and reactive components is challenging (as always).
 - The IU-Agent may be the first embedded online MDPbased agent for complex task models.
- Pruning based on runtime information is critical to performance.
- Meta-control is even more critical:
 - When to stop increasing state space size to derive a policy based on space unrolled so far?
 - How to bias expansion: depth-first vs. breadth-first, as expanded horizon and next-action-opportunity time varies.

Honeywell Laboratories



Honeywell Laboratories

IU Agent Architecture



Honeywell Laboratories

Markov Decision Processes: What Are They?

- Formally-sound model of a class of control problems: what action to choose in possible future states of the world, when there is uncertainty in the outcome of your actions.
- State-machine representation of changing world, with:
 - Controllable action choices in different states.
 - Probabilistic representation of uncertainty in the outcomes of actions.
 - Reward model describing how agent accumulates reward/utility.
- Markov property: each state represents all the important information about the world; knowing what state you are in is sufficient to choose your next action. (No history needed)
- Optimal solution to an MDP is a *policy* that maps every possible future state to the action choice that maximizes *expected utility*.

~\coordinators\talks 31

Honeywell

Markov Decision Process Overview

- Model: A set of <u>states</u> (S) in which agent can perform subset of <u>actions</u> (A), resulting in probabilistic <u>transitions</u> (δ(s,a)) to new states and <u>reward</u> for each state and action (R(s,a)).
- Markov assumption: the next state and reward are only functions of the current state and action, no history required.
- Solution <u>policy</u> (π) specifies what action to choose in each state, to maximize expected lifetime reward.
- For infinite-horizon MDPs:
 - Use future-reward discount factor to prevent infinite lifetime reward.
 - Value/policy-iteration algorithms can find optimal policy.
- For finite-horizon MDPs, Bellman backup (dynamic programming) solves for optimal policy in O(|S|) without reward discounting.
- Given a policy, can analytically compute expected reward (no simulation or sampling required).

Honeywell

Why Use MDPs?

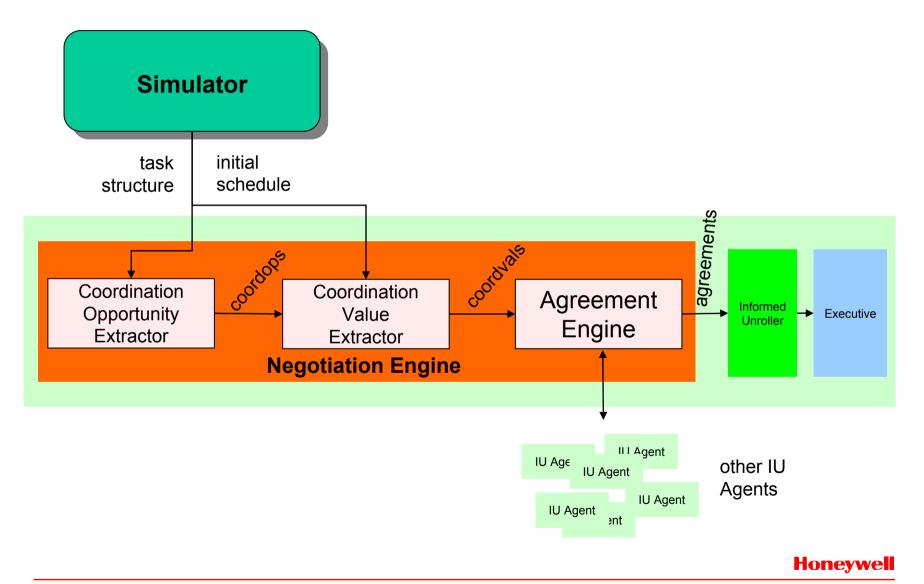
- Explicit representation of uncertainty.
 - Rationally balance risk and duration against potential reward.
 - TAEMS domains can include exactly this type of tradeoff (e.g., a longer method may achieve high quality or fail; a shorter method may be more reliable but yield lower quality).
- Accounts for delayed reward (e.g., from enabling later methods).
- Formal basis for defining optimal solutions.
 - When given an objective TAEMS multi-agent model, Kauai can derive an optimal policy if given enough time.
- Efficient existing algorithms for computing optimal policies.
 - Polynomial in the number of MDP states.
- Downside: state space can be very large (exponential).
 - Multi-agent models are even larger.

Domains Where MDPs Should Dominate

- When predictions of future possible outcomes can lead to different action choices.
- Reactive methods which do not look ahead can get trapped in "garden path" dead-ends.
- End-to-end methods that do not consider uncertainty cannot balance risk and duration against reward.
- MDPs inherently implement two forms of *hedging*:
 - Pre-position enablements to avoid possibility of failure.
 - Choose lower-quality methods now to ensure higher overall expected quality.
- Expectations about future problem arrivals (meta-TAEMS) can also influence MDP behavior and improve performance.

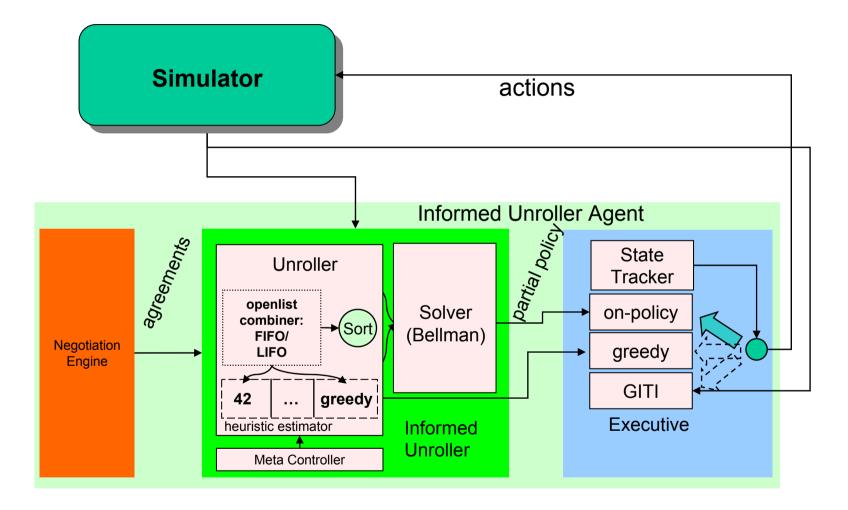
Honeywell

Negotiation Engine



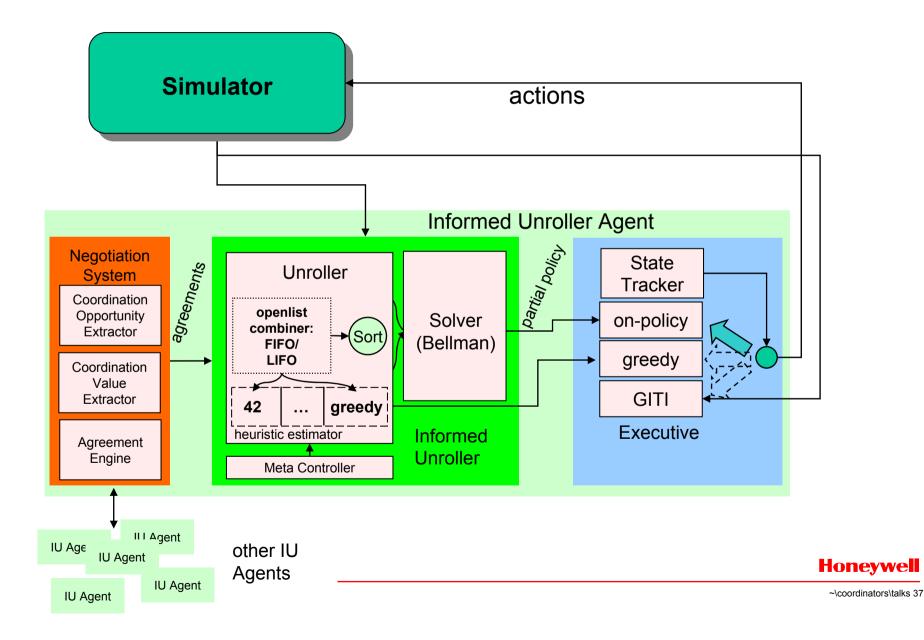
Honeywell Laboratories

Informed Unroller and Executive

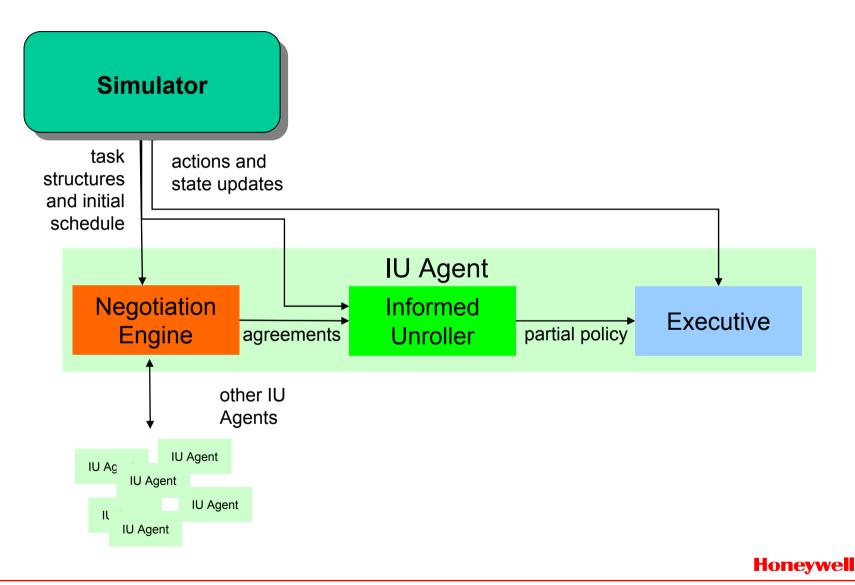


Honeywell

Informed Unroller and Executive



IU Agent Architecture

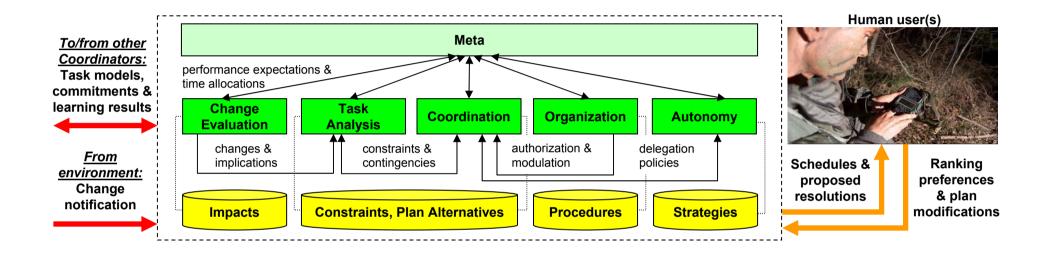


Honeywell Laboratories

Motivating Problem

- Coordination of mission-oriented human teams, at various scales.
 - First responders (e.g., firefighters).
 - Soldiers.
- Distributed, multi-player missions.
- Complex interactions between tasks.

Architecture

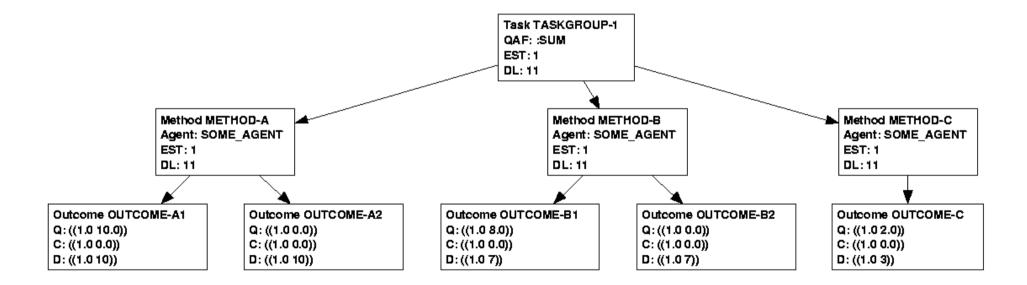


Mapping TAEMS to MDPs

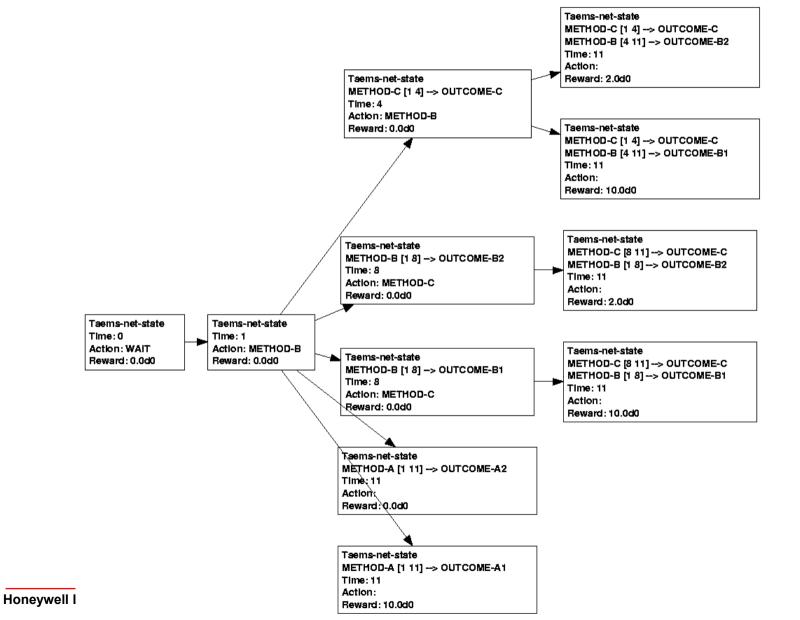
- MDP states represent possible future states of the world, where some methods have been executed and resulted in various outcomes.
- To achieve the Markov property, states will represent:
 - The current time.
 - What methods have been executed, and their outcomes.
- Actions in the MDP will correspond to method choices.
- The transition model will represent the possible outcomes for each method.
- For efficiency, many states with just time-increment differences are omitted (no loss of precision).
- We also currently omit 'abort' action choice at all times except method deadline.
 - Pre-deadline aborts can be useful, but enormously expand state space.
 - Hope to remove/reduce this limitation in the future: can limit aborts to only when relevant times occur.

Honeywell

Simple Single-Agent TAEMS Problem



Unrolled MDP



nators\talks 43

evwell

IU-Agent Control Flow Outline

- Coordination opportunities identified in local TAEMS model (subjective view).
- Initial coordination value expectations derived from initial schedule.
- Communication establishes agreements over coordination values.
- Coordination values used to manipulate subjective view and MDP unroller, to bias towards solutions that meet commitments.
- Unroller runs until first method can be started. Derives partial policy.
- Executive runs MDP policy.
- If agent gets confused or falls off MDP, enters greedy mode.

Coordination Mechanism

- Local detection of possible coordination opportunities:
 - Enablement.
 - Synchronization.
 - Redundant task execution.
- Local generation of initial coordination values:
 - Use initial schedule to "guess" at good values.
- Communication
 - Establish that other agents are involved in coordinating:
 - Local information is incomplete.
 - Requires communication only among possible participants.
 - Establish a consistent set of coordination values:
 - Requires communication only among actual participants.

Steering MDP Policy Construction Towards Coordination

- MDP policies include explicit contingencies and uncertain outcomes.
- Enforcing a "guarantee" is frequently the wrong thing to do, because accepting a small possibility of failure can lead to a better *expected quality*.
- Three ways of guiding MDP policies:
 - Additional reward or penalty attached to states with a specific property (e.g., achievement of quality in an enabling method by a specified deadline).
 - "Nonlocal" proxy methods representing the committed actions of others (e.g., synchronized start times).
 - Hard constraints (e.g., using a release time to delay method starts until after an agreed-upon enablement).
- Hard constraints can be subsumed by nonlocal proxy methods.

Informed MDP Unrolling Performance

- Over a number of example problems, including GITI-supplied problems, the informed unroller is able to formulate policies with expected quality approaching the optimal, but a couple of orders-of-magnitude faster.
- Example for local policies for agents in the test1 problem:

