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OutlineOutline

• Problem overview: Coordinators, C-TAEMS.
– Relationship to prior talks:

- Distributed coordination of teams.
- Dynamic changes, on-the-fly replanning.
- Things that are connected in plans are Nodes (for 
Austin!)

• Agent design overview.
• Mapping single-agent task models to MDPs.
• Achieving inter-agent coordination.
• Lessons and future directions.
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Motivating ProblemMotivating Problem

• Coordination of mission-oriented human teams, at various scales.
– First responders (e.g., firefighters).
– Soldiers.

• Distributed, multi-player missions.
• Complex interactions between tasks.
• Uncertainty in task models – both duration and outcome.
• Dynamic changes in tasks: unmodeled uncertainty, new tasks.

Highly contingent plans = policies.
More powerful representation than current military plans.

• Real-time.

• Challenge: the right tasks done by the right people at the right time.
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CTAEMS- A Language and TestbedCTAEMS- A Language and Testbed

• CTAEMS is a hierarchical task model used by the Coordinators 
program.

• Stresses reasoning about the interactions between tasks 
and about the quality of solutions.

• There is no explicit representation of world state, unlike 
conventional plan representations.

2 May 2007 4
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CTAEMS Includes Task DecompositionCTAEMS Includes Task Decomposition

2 May 2007 5
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Modeled Uncertainty & Quality AccumulationModeled Uncertainty & Quality Accumulation

2 May 2007 6

• Methods (primitives) 
– are temporally-extended, with deadlines and release times;
– are stochastic, with multiple outcomes.
– Each agent can perform only one at a time.

• Tasks have QAFs used to roll-up quality from children.
• Root node quality is overall utility.

Accomplish Mission

Move into Position Engage

Move B into Position

Move A into Position

Engage with B

Engage with A

sum

min

sync-sum

Quality: 10 75%, 20 25%
Duration: 5 50%, 9 50%



Honeywell Laboratories ~\coordinators\talks 7

Non-local Effects (NLEs)Non-local Effects (NLEs)

• Non-local effects (NLEs) are 
edges between nodes in the task 
net.

• The quality of the source node 
will affect the target node.

• NLEs can be positive or negative 
and qualitative or quantitative:
– Enablement, disablement, 

facilitation or hindering.
• These effects can also be 

delayed.

2 May 2007 7
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Approach OverviewApproach Overview

• “Unroll” compact CTAEMS task model into possible futures (states) in a 
probabilistic state machine – a Markov Decision Process.

• MDPs provide a rigorous foundation for planning that considers 
uncertainty and quantitative reward (quality).
– State machines with reward model, uncertain actions.
– Goal is to maximize expected utility.
– Solutions are policies that assign actions to every reachable state.

• Distribution is fairly new: single-agent MDPs must be adapted to reason 
about multi-agent coordination.

• Also, CTAEMS domains present the possibility of meta-TAEMS task 
model changes and un-modeled failures.

• Honeywell’s IU-Agent addresses these concerns (partly).
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Mapping TAEMS to MDPsMapping TAEMS to MDPs

• MDP states represent possible future states of the world, 
where some methods have been executed and resulted in 
various outcomes.

• To achieve the Markov property, states will represent:
– The current time.
– What methods have been executed, and their outcomes.

• Actions in the MDP will correspond to method choices.
• The transition model will represent the possible outcomes for 

each method.
• For efficiency, many states with just time-increment 

differences are omitted (no loss of precision).
• We also currently omit ‘abort’ action choice at all times 

except method deadline.
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Simple Single-Agent TAEMS ProblemSimple Single-Agent TAEMS Problem

.5 .5 .5 .5
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Informed (Directed) MDP UnrollerInformed (Directed) MDP Unroller
• Formulating real-world problems in 

an MDP framework often lead to a 
large state spaces. 

• When computational capability is 
limited, we might be unable to 
explore the entire state space of an 
MDP. 

• The decision about the subset of an 
MDP state space to be explored 
(“unrolled”) affects the quality of the 
policy.

• Uninformed exploration can unroll 
to a particular time horizon.

• Informed exploration biases 
expansion towards states that are 
believed to lie along trajectories of 
high-quality policies.
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Steering Local MDPs Towards Inter-Agent CoordinationSteering Local MDPs Towards Inter-Agent Coordination

• MDPs require reward model to optimize.
• Assume local quality is a reasonable approximation to global 

quality.
– This is not necessarily true.
– In fact, some structures in CTAEMS make this 

dramatically incorrect.
- E.g., SYNCSUM; semantics of surprise.

• Use communication to construct agreements over 
commitments.

• Use commitments to bias local MDP model to align local 
quality measures with global.
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IU-Agent Control Flow OutlineIU-Agent Control Flow Outline

• Coordination opportunities identified in local TAEMS model (subjective 
view).

• Initial coordination value expectations derived from initial schedule.
• Communication establishes agreements over coordination values.
• Coordination values used to manipulate subjective view and MDP 

unroller, to bias towards solutions that meet commitments.
• Unroller runs until first method can be started.  Derives partial policy.
• Executive runs MDP policy.
• If agent gets confused or falls off MDP, enters greedy mode.
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Steering MDP Policy Construction Towards Coordination

• Two primary ways of guiding MDP policies:
– Additional reward or penalty attached to states with a specific 

property (e.g., achievement of quality in an enabling method by a 
specified deadline).

– “Nonlocal” proxy methods representing the committed actions of 
others (e.g., synchronized start times).
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Informed Unroller PerformanceInformed Unroller Performance
• Anytime.
• Converges to optimal complete policy.
• Can capture bulk of quality with much less thinking.
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Lessons and Future DirectionsLessons and Future Directions

• Integration of the deliberative and reactive components is 
challenging (as always).
– The IU-Agent may be the first embedded online MDP-

based agent for complex task models.
• Pruning based on runtime information is critical to 

performance.
• Meta-control is even more critical: 

– When to stop increasing state space size to derive a 
policy based on space unrolled so far?

– How to bias expansion: depth-first vs. breadth-first, as 
expanded horizon and next-action-opportunity time 
varies.
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THE END
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Markov Decision Processes: What Are They?Markov Decision Processes: What Are They?

• Formally-sound model of a class of control problems: what action to 
choose in possible future states of the world, when there is uncertainty in 
the outcome of your actions.

• State-machine representation of changing world, with:
– Controllable action choices in different states.
– Probabilistic representation of uncertainty in the outcomes of actions.
– Reward model describing how agent accumulates reward/utility.

• Markov property: each state represents all the important information 
about the world; knowing what state you are in is sufficient to choose 
your next action.  (No history needed)

• Optimal solution to an MDP is a policy that maps every possible future 
state to the action choice that maximizes expected utility.
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Markov Decision Process OverviewMarkov Decision Process Overview

• Model: A set of states (S) in which agent can perform subset of actions
(A), resulting in probabilistic transitions (δ(s,a)) to new states and reward
for each state and action (R(s,a)).

• Markov assumption: the next state and reward are only functions of the 
current state and action, no history required.

• Solution policy (π) specifies what action to choose in each state, to 
maximize expected lifetime reward.

• For infinite-horizon MDPs:
– Use future-reward discount factor to prevent infinite lifetime reward.
– Value/policy-iteration algorithms can find optimal policy.

• For finite-horizon MDPs, Bellman backup (dynamic programming) solves 
for optimal policy in O(|S| ) without reward discounting.

• Given a policy, can analytically compute expected reward (no simulation 
or sampling required).

3
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Why Use MDPs?Why Use MDPs?

• Explicit representation of uncertainty.
– Rationally balance risk and duration against potential reward.
– TAEMS domains can include exactly this type of tradeoff (e.g., a

longer method may achieve high quality or fail; a shorter method may 
be more reliable but yield lower quality).

• Accounts for delayed reward (e.g., from enabling later methods).
• Formal basis for defining optimal solutions.

– When given an objective TAEMS multi-agent model, Kauai can derive 
an optimal policy if given enough time.

• Efficient existing algorithms for computing optimal policies.
– Polynomial in the number of MDP states.

• Downside: state space can be very large (exponential).
– Multi-agent models are even larger.
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Domains Where MDPs Should DominateDomains Where MDPs Should Dominate

• When predictions of future possible outcomes can lead to 
different action choices.

• Reactive methods which do not look ahead can get trapped 
in “garden path” dead-ends.

• End-to-end methods that do not consider uncertainty cannot 
balance risk and duration against reward.

• MDPs inherently implement two forms of hedging:
– Pre-position enablements to avoid possibility of failure.
– Choose lower-quality methods now to ensure higher 

overall expected quality.
• Expectations about future problem arrivals (meta-TAEMS) 

can also influence MDP behavior and improve performance.
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Informed Unroller and ExecutiveInformed Unroller and Executive
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Motivating ProblemMotivating Problem

• Coordination of mission-oriented human teams, at various 
scales.
– First responders (e.g., firefighters).
– Soldiers.

• Distributed, multi-player missions.
• Complex interactions between tasks.
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Mapping TAEMS to MDPsMapping TAEMS to MDPs

• MDP states represent possible future states of the world, where some 
methods have been executed and resulted in various outcomes.

• To achieve the Markov property, states will represent:
– The current time.
– What methods have been executed, and their outcomes.

• Actions in the MDP will correspond to method choices.
• The transition model will represent the possible outcomes for each 

method.
• For efficiency, many states with just time-increment differences are 

omitted (no loss of precision).
• We also currently omit ‘abort’ action choice at all times except method 

deadline.
– Pre-deadline aborts can be useful, but enormously expand state 

space.
– Hope to remove/reduce this limitation in the future: can limit aborts to 

only when relevant times occur.
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Simple Single-Agent TAEMS ProblemSimple Single-Agent TAEMS Problem
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Unrolled MDPUnrolled MDP
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IU-Agent Control Flow OutlineIU-Agent Control Flow Outline

• Coordination opportunities identified in local TAEMS model (subjective 
view).

• Initial coordination value expectations derived from initial schedule.
• Communication establishes agreements over coordination values.
• Coordination values used to manipulate subjective view and MDP 

unroller, to bias towards solutions that meet commitments.
• Unroller runs until first method can be started.  Derives partial policy.
• Executive runs MDP policy.
• If agent gets confused or falls off MDP, enters greedy mode.
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Coordination Mechanism
• Local detection of possible coordination opportunities:

– Enablement.
– Synchronization.
– Redundant task execution.

• Local generation of initial coordination values:
– Use initial schedule to “guess” at good values.

• Communication 
– Establish that other agents are involved in coordinating:

- Local information is incomplete.
- Requires communication only among possible participants.

– Establish a consistent set of coordination values:
- Requires communication only among actual participants.
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Steering MDP Policy Construction Towards Coordination

• MDP policies include explicit contingencies and uncertain outcomes.
• Enforcing a “guarantee” is frequently the wrong thing to do, because 

accepting a small possibility of failure can lead to a better expected 
quality.

• Three ways of guiding MDP policies:
– Additional reward or penalty attached to states with a specific 

property (e.g., achievement of quality in an enabling method by a 
specified deadline).

– “Nonlocal” proxy methods representing the committed actions of 
others (e.g., synchronized start times).

– Hard constraints (e.g., using a release time to delay method starts 
until after an agreed-upon enablement).

• Hard constraints can be subsumed by nonlocal proxy methods.
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Informed MDP Unrolling PerformanceInformed MDP Unrolling Performance
• Over a number of example problems, including GITI-supplied problems, 

the informed unroller is able to formulate policies with expected quality 
approaching the optimal, but a couple of orders-of-magnitude faster.

• Example for local policies for agents in the test1 problem:


