

### **KSCO Events**

- KSCO-1999 International Workshop on Knowledge-Based Planning for Coalition Operations, May 1999, Edinburgh, Scotland.
  - Working parties proposed series of Coalition Experiments Binni scenario adopted for community experimentation.
  - Working Group on KSCO formed and first meeting held to plan community activities.
- Coalition Experiments and multi-national joint experimentation encouraged.
- KSCO-2002 Second Conference on Knowledge Systems for Coalition Operations, June 2002, Toulouse, France.
- ♦ IEEE Intelligent Systems, Special Issue on Knowledge Systems for Coalition Operations, Volume 17 Number 2, May/June 2002.
- ♦ KSCO-2004 Volume of Papers on Knowledge Systems for Coalition Operations, October 2004. Planned conference in Pensacola, Florida, USA cancelled during active hurricane season (Ivan in September 2004).
- KSCO-2006 Third Conference on Knowledge Systems for Coalition Operations, part of IEEE Workshop on Distributed Intelligent Systems (DIS-2006), June 2006, Prague, Czech Republic.
- Web site and relevant occasional communications on behalf of community.



# KSCO Working Group

- ◆ Jean Berger (DRDC, Canada)
- ◆ Jeff Bradshaw (IHMC, USA)
- **♦** David Brown (MITRE, USA)
- ♦ Richard Davis (DSTO, Australia)
- ♦ Roberto Desimone (QinetiQ, UK)
- **♦** Jerry Dussault (AFRL, USA; TTCP Representative)
- ◆ Dan Fayette (AFRL, USA)
- ♦ Scott Fouse (IS, USA)
- ♦ Nort Fowler (AFRL, USA; now retired)
- ♦ Vladimir Gordoteski (St. Petersburg Inst. for Info. and Automation, Russia)
- **♦** Jim Hendler (University of Maryland, USA)
- ◆ Jan Jelínek (Honeywell, USA)
- ◆ James Lawton (AFRL, USA)
- ◆ Paul Losiewicz (EOARD/London, USA)
- ♦ Vijay Kowtha (ONR Global/London, USA)
- ◆ Dale Lambert (DSTO, Australia)
- ♦ Barry McKinney (EOARD/London, USA)
- ♦ Rick Metzger (AFRL, USA)
- **♦** Jitu Patel (DSTL, UK; TTCP Representative)
- ♦ Michal Pěchouček (Czech Technical University in Prague, Czech Republic)
- **♦** Tony Rathmell (DSTL, UK)
- ♦ Martin Rehák (Czech Technical University in Prague, Czech Republic)
- ♦ Niranjan Suri (IHMC, USA)
- ◆ Austin Tate (AIAI, University of Edinburgh, UK)



# **KSCO Topics**

- Innovative theory and techniques for coalition formation and support to similar "virtual organisations"
- Applications and requirements for knowledge-based coalition planning and operations management
- Knowledge-based approaches to command and control
- Knowledge-based approaches to coalition logistics
- ◆ Knowledge-based approaches to Operations-Other-Than-War such as peace keeping missions and other humanitarian operations
- Multi-agent systems and the concept of agency in coalitions
- Tools and techniques for knowledge-based simulation and modelling of coalition operations
- Security and maintenance of private information or knowledge in coalition operations
- Autonomous vs. centrally managed coalition operations



### **KSCO** Issues

- Different doctrine, decision making, rules of engagement and, in general, mission "agendas"
- Different technology skill and equipment levels
- Questionable compatibility of respective national information systems
- Limited models for coalition force operations
- Command authorities agreement and transfers
- Information systems resource sharing agreements & capacity
- ◆ Different interpretation of situational information
- ◆ Lack of compatible security architectures

From LeRoy Pearce, Canadian MOD

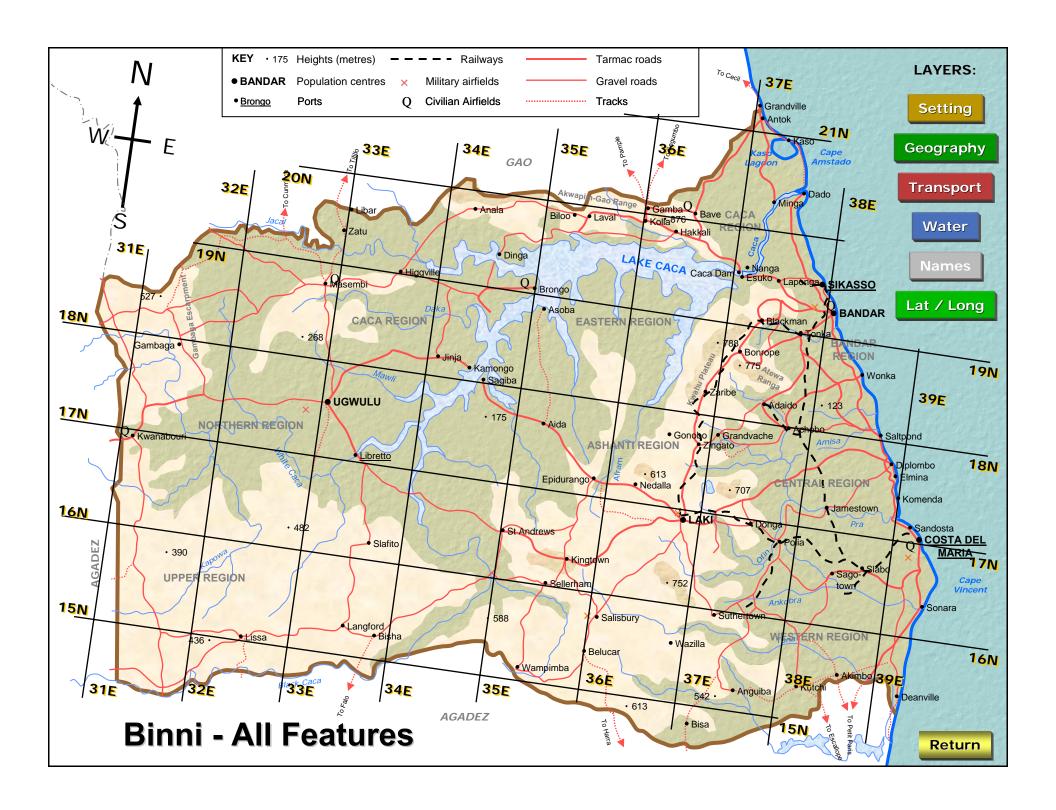


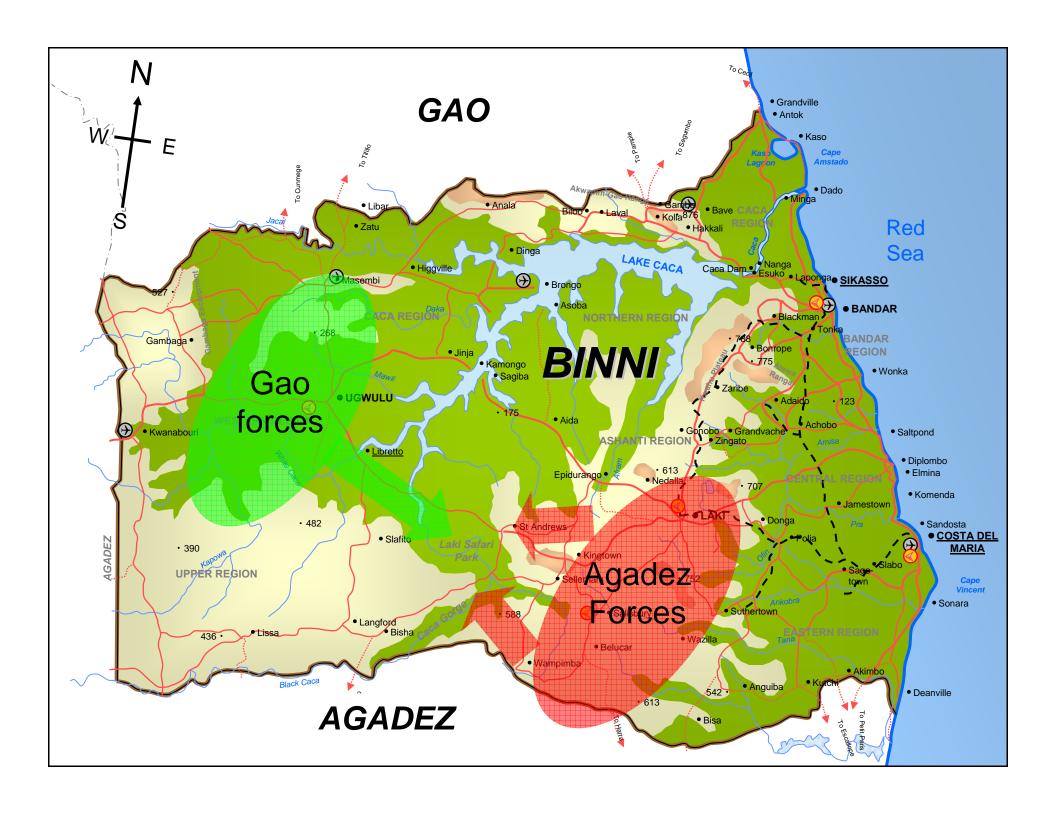
# TTCP The Technical Cooperation Program

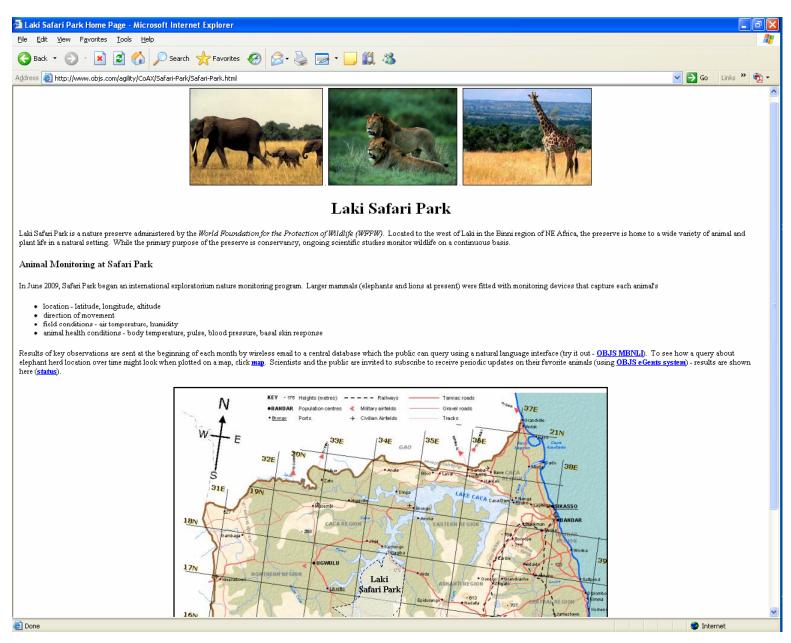


- ◆ Australia, Canada, New Zealand, UK, USA
- ◆ C3I Group Command, Control, Communication and Information Systems
- Created Binni Scenario
- ◆ Encouraged KSCO and Coalition Experiments
- http://www.dtic.mil/ttcp/




# Binni - Gateway to the Golden Bowl of Africa





Rathmell, R.A. (1999) A Coalition Force Scenario 'Binni - Gateway to the Golden Bowl of Africa', in Proceedings of the International Workshop on Knowledge-Based Planning for Coalition Forces, (ed. Tate, A.) pp. 115-125, Edinburgh, Scotland, 10th-11th May 1999.

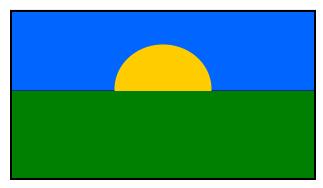






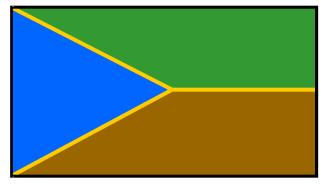






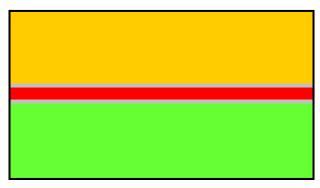






## **Binni Vexillology**

### Binni




Represents the hopes of the Binni Founding Fathers that the Sun will rise and set in a cloudless sky over a lush and prosperous landscape.

### Agadez



Represents the union of Mountain (blue), Upland (green) and Lowland (brown) peoples of Agadez each maintaining their independence yet united against all opponents.

### Gao



Reflects the anguish of the history of Gao with nature alternating between poverty and plenty divided by the crimson stained path of tribal conflict.

### Arabello



Represents the five fiefdoms of Arabello unified under a sultan of wealth and power.

### **Binni Scenario Materials**

binni.org

or via KSCO web site



# **Coalition Experiments**

- ◆ Coalition Logistics 1, 2000 San Diego, CA, US
- ◆ Coalition Logistics 2, 2000 Malvern, UK
- ◆ CoAX Binni 2000 Malvern, UK
- ◆ CoAX Binni 2001 Malvern, UK
- ◆ CoAX Binni 2002 Newport, RI, USA



### Coalition Logistics Challenges

#### Short/Medium-term

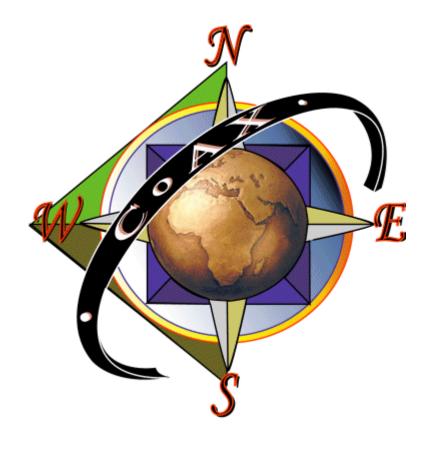
In-service 2-5 years

- Define coalition logistics processes for various missions
- Develop shared representation (culture,doctrine, language)
  - → Classes of logistics/deployment assets
  - Coalition logistics picture for monitoring execution
- Establish coalition access (with accredited security model)
  - → Plethora of logistics systems & databases
  - → Logistics validation models & models
- Demonstrate e-commerce approach to bidding & brokering for logistics capabilities
- Capitalise on planning & scheduling technology



### Coalition Logistics Challenges

<u>Long-term</u> In-service 5-10years


- Demonstrate adaptable rapidly re-configurable coalition logistics processes
- Develop shared representation (culture,doctrine, language)
  - → Essential tasks, plans, capabilities & options
  - Agent capabilities & authority chain/process
- Support complex planning queries
  - → Validated by simulation models at multiple hierarchical levels
- Establish more flexible security domain model



### Coalition Logistics Exercise/Workshop

- 5 day duration (3 day exercise + 2 day workshop)
- Objectives
  - Develop coalition plan for prepared scenario
  - → Jump-start & refine collaborative programme
- Participants: Logs experts (J4/tech) + 2/4 program managers
  - → Exercise lead (J4) techies on tap & observing
  - → Workshop lead (Techies) J4 on tap & validating
- Inputs
  - → Exercise lead (J4) techies on tap & observing
  - → Workshop lead (Techies) J4 on tap & validating
- Outputs
  - → Logistics plan / lessons learned / knowledge acquisition
  - → Specific collaboration programme / defined R&D tasks & expts
- Locations/Dates
  - → San Diego, USA in May 2000
  - → Malvern, UK in September 2000





Coalition Agents eXperiment http://www.aiai.ed.ac.uk/project/coax/



## **Context**

- ◆ Increasing military requirements for coalition operations
- ◆ Belief that agent computational model can support:
  - ◆ Coalition interoperability requirements
  - ◆ Dynamic and Decentralized C3I
- ◆ International Agent Research Programmes
  - ◆ US DARPA Control of Agent Based Systems (CoABS)
  - ♦ UK DSTL/QinetiQ Agents Project
  - Australian and Canadian Agents and Coalition Work
  - ◆ TTCP C3I Groups for international involvement
- Need for "middleware" such as is provided by DARPA CoABS Grid Infrastructure



## **Aim of Coalition TIE**

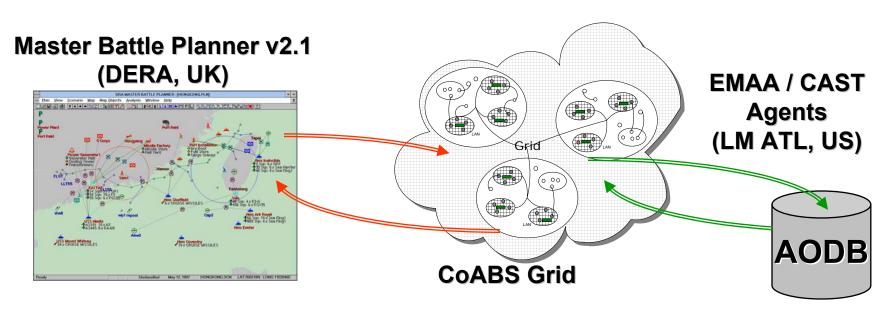
- ◆ To address unique aspects of coalition operations through the development and evaluation of:
  - agent domain management services
  - agent task, process and event management services
  - Specific agent services
- Aim will be met through delivery of:
  - Phased technical demonstrations of increasing complexity
  - Integration of diverse agent systems
  - Development of generic Coalition-oriented grid services
- Requirements:
  - Use of a wide variety of different agent systems
  - ◆ Use of existing military (non-agent) applications



## **Key Technical Drivers**

- Cannot assume interoperability, reliability or availability of different nations systems
- Need for partial (secure) sharing and visualization of processes, data and facilities
- Need to work with agents in multiple dynamically determined domains
- Need for flexible inter-agent task and process management
- Need for rapid formation, management and change of agent relationships




### **Demonstration Schedule**

- ◆ 1-month demo at kick-off in February 2000 showing direct connection over "CoABS Grid" between two military systems: DERA MBP and LM ATL AODB
- ♦ 6-month integration milestone in July 2000 showing initial integration of selected CoAX components for year 2000 demo
- ◆ CoAX Binni 2000 demo in Fall 2000:
  - Briefing the CoAX TIE and Binni scenario
  - Showing full integration of selected CoAX components in Binni
  - ◆ Telling a relevant "story" about agents for information gathering
- ◆ CoAX Binni 2001 demo in Fall 2001:
  - ◆ Fully integrating all CoAX components in a rich coalition scenario
  - Expanding scope to cover dynamic re-planning
- ◆ CoAX Binni 2002 demo in Fall 2002:
  - Showing dynamic aspects of coalition organization, domain management, tasking and event handling
  - Expanding scope to cover dynamic planning, coordination and execution.



# CoAX Month 1 (February 2000) Initial Demo

- ◆ Demonstration involves AFRL Rome, DERA Malvern and LM ATL and is a first (risk reduction) step toward CoAX
- Demo shows legacy applications can be usefully integrated into an agent framework (over CoABS Grid)







Prototype CoABS Grid allows heterogeneous agent and legacy systems to:

- **■** Register themselves
- **■** Find available resources
- **■** Form task-based teams

- Advertise their capabilities & needs
- **■** Communicate among themselves
- **■** Encrypt conversations

# CoAX 6-Month (July 2000) Milestone

- Eleven agents in three separate agent domains representing coalition functional units (JTF HQ, JFAC HQ, Gao Intel)
- ◆ Binni scenario information used to drive storyboard
- ◆ Tasking and control across coalition functional units
- Visualization of coalition C2 process via a simple process model
- Simple policy administration tool for selective information sharing and communication blocking









# CoAX Binni 2000 – Coalition TIE Technology Integration Experiment

TTCP Meeting - Malvern - September 2000

AFRL Rome, AIAI, Boeing, Dartmouth, DERA Malvern, Lockheed Martin ATL, Michigan, MIT Sloan, Stanford, USC/ISI, UWF/IHMC Support from BBN, GITI, ISX, MITRE, Schafer

http://www.aiai.ed.ac.uk/project/coax/



## CoAX 9-Month (October 2000) Binni 2000 Demo

- ◆ Focus on information-gathering phase
- First interoperation of agent-wrapped legacy US and UK systems
- New agents and domains
  - ◆ Three additional agent domains (6 domains and ~25 agents)
  - Incorporation of domain-aware CAMPS airlift planning system
  - Ariadne agent providing publicly available weather information
  - More powerful I-X Process Panels
- New domain management functionality
  - Malicious observer agent thwarted by domain management and NOMADS resource control mechanisms
  - KAoS Policy Administration Tool (KPAT) administering communication, registration, and resource policies
- New stand-alone demonstrations:
  - MIT exception handling
  - Stanford incentive management
  - ◆ U. Michigan plan deconfliction
  - Dartmouth 'observer agents'

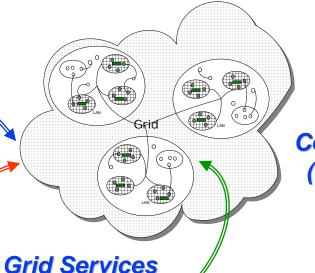


## **CoAX 2000 Components**

#### Agent Frameworks

KAoS Agents (Boeing, IHMC) D'Agents (Dartmouth) **EMAA/CAST Agents (LM ATL)** 

**Agents on the Grid** 


**AODB Agent (LM ATL)** 

Observer Agents (Dartmouth)

Malicious Agents (IHMC, Boeing)

Web Weather Agent (USC/ISI)





DARPA **CoABS** Grid (GITI, ISX)

**Agent Grid Services** 

**Task and Process Management (AIAI) Domain Management Services (Boeing, IHMC) Plan Deconfliction (Michigan) Exception Handling (MIT)** 

**Incentive Management (Stanford)** 











## **CoAX – Coalition Agents eXperiment**

AIAI, BBN, CMU, Dartmouth, DSTO, GITI,
Lockheed Martin ATL, NRL, Potomac Inst., U.Maryland,
U.Michigan, QinetiQ, USC/ISI, UTexas, UWF/IHMC
Support from AFRL, ARL, Boeing, DREV, DSTL, ISX, MITRE,
MIT Sloan, NWDC, OBJS, Schafer, Stanford, TTCP

http://www.aiai.ed.ac.uk/project/coax/



## CoAX 18-Month (July 2001) Binni 2001 Demo

- More realism in coalition structures
  - ◆ All CoAX members integrated (9 domains and ~35 agents)
  - Coalition agents playing multiple roles in different domains
  - New policies add additional robustness and security
  - Added functionality in process and task management
- Increased scope of Binni scenario demonstration
  - Richer information gathering phase
  - Planning and execution phases of Binni added in
- ◆ Incorporating coalition functionality becomes easier
  - Packaging capabilities as pluggable grid services



## CoAX Binni 2001 Demo Emphasis

#### **Initial Planning**

- Political aims
- Military guidance
- Campaign planning
- · Commander's intent
- Deployment

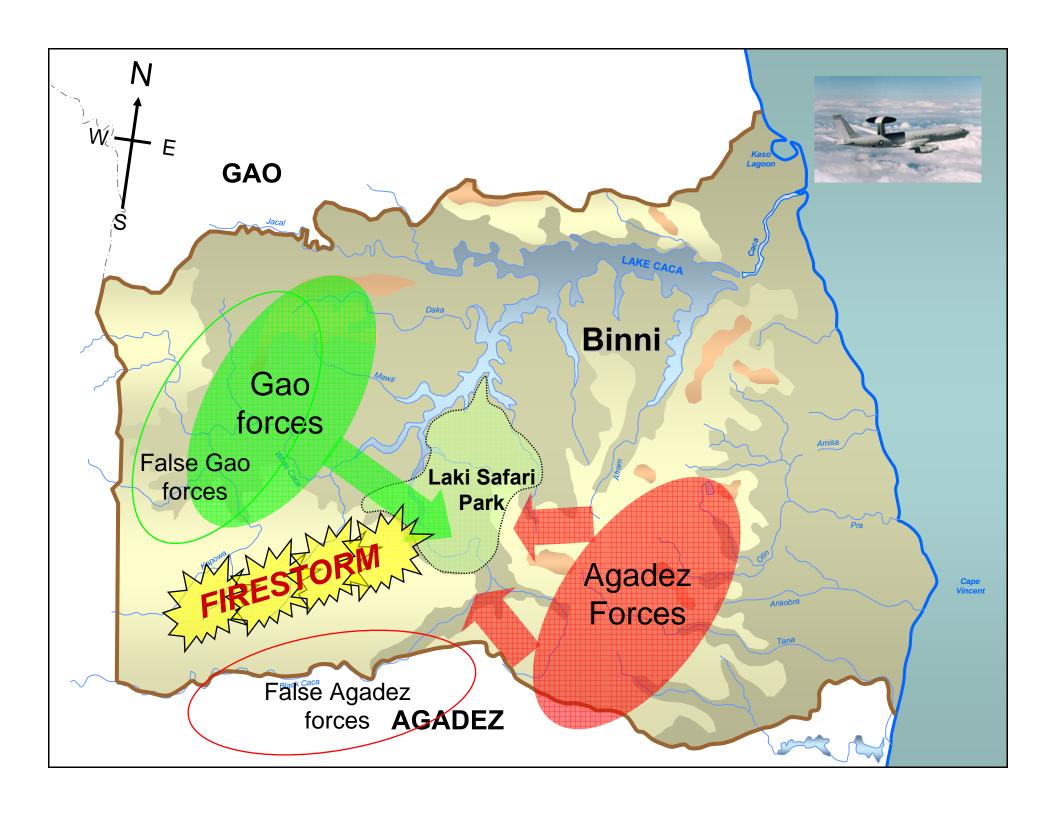
Linear

Focus of the CoAX Binni 2000 Demo

#### **Execution**

- Variable Organizations
- An opponent
- Campaign re-planning
- Short-notice taskings
- Operation execution
- Execution monitoring
- Reporting / feedback
- Outcome assessment

Dynamic / iterative uncertain

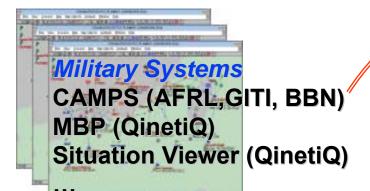

Focus of the CoAX Binni 2001 Demo

#### Recovery

- Conflict resolution
- Re-deployment
- Peace support

Linear

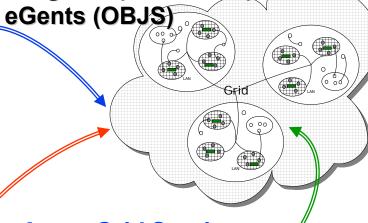





## **CoAX 2001 Components**

Agents on the Grid
AODB Agent (LM-ATL)
Observer Agents (Dartmouth)
eGents E-mail Agents (OBJS)
Malicious Agents (IHMC)

Web Weather Agent (USC/ISI)


. . .

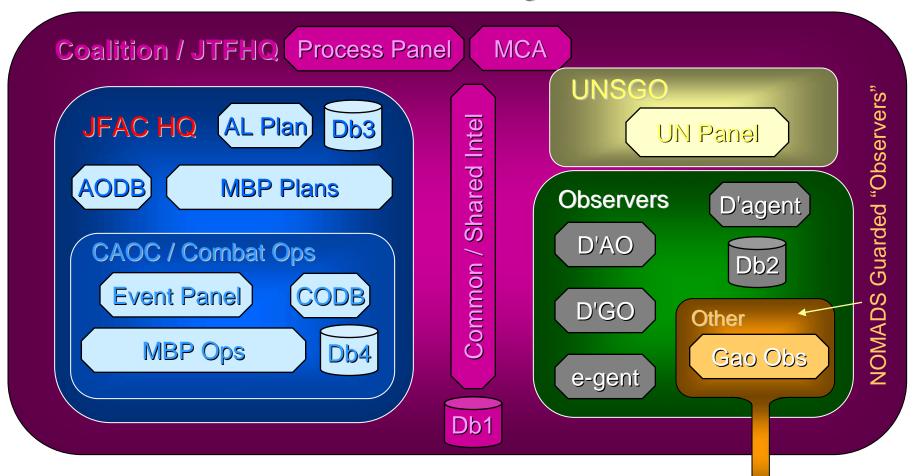


### **Agent Frameworks**

KAoS Agents (IHMC, Boeing)
NOMADS Mobile Agents (IHMC)
EMAA/CAST Agents (LM-ATL)
GMAS (Dartmouth, IHMC, LM-ATL)

D'Agents (Dartmouth)



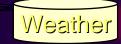

DARPA CoABS Grid (GITI, ISX)

### **Agent Grid Services**

Task, Process and Event Management (AIAI)
Domain Management Services (IHMC, Boeing)
Asynchronous Wireless Connectivity (OBJS)
Plan Deconfliction (Michigan)



### **CoAX Binni 2001 Demo - Agent Domains**














**CYBERSPACE** 



e-gents



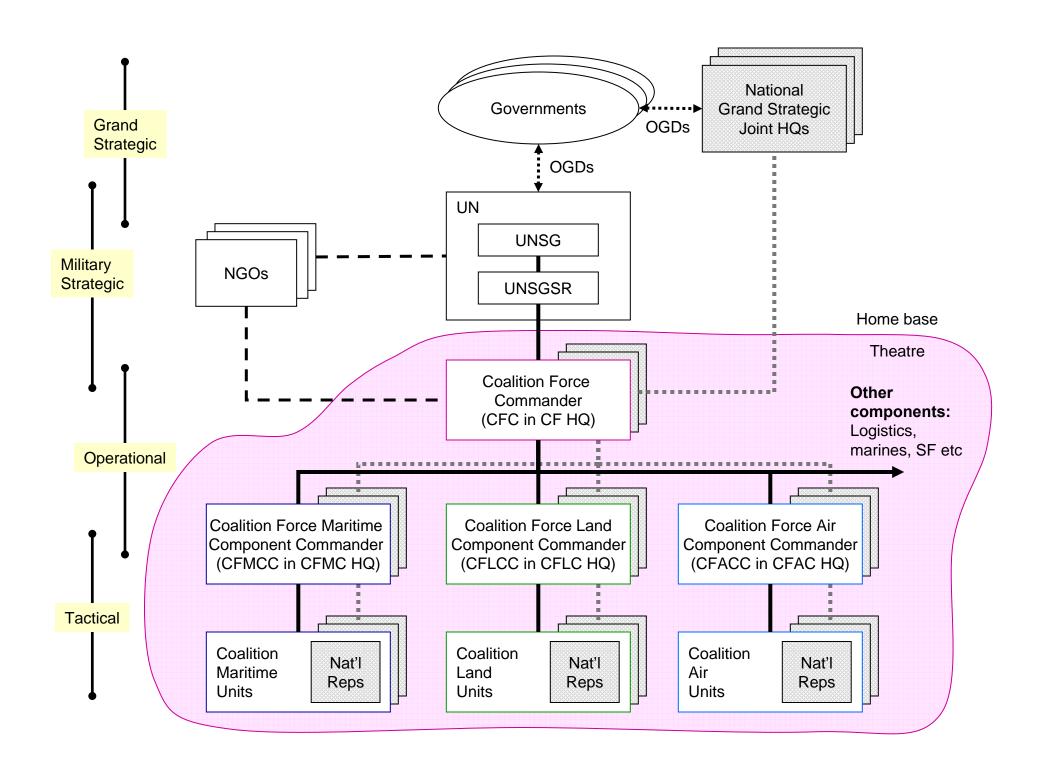
## **CoAX – Coalition Agents eXperiment**

AIAI, BBN, CMU, Dartmouth, DSTO, GITI,
Lockheed Martin ATL, NRL, Potomac Inst., U.Maryland,
U.Michigan, QinetiQ, UT-Austin, UWF/IHMC
Support from AFRL, ARL, Boeing, DRDC, DSTL, ISX, MITRE,
MIT Sloan, NWDC, OBJS, Schafer, Stanford, TTCP, USC/ISI, USPACOM

http://www.aiai.ed.ac.uk/project/coax/

# CoAX Binni 2002 (Fall 2002) Demo

- ◆ Dynamic "come as you are" coalition formation
  - Dynamic creation of 'virtual coalition organization'
  - Agents and domains added to coalition structure 'on-the-fly'
  - Dynamic coalition tasks and processes
- ◆ Tailored visualizations / interface agents
- Tools to improve human / software agent interaction
- High-level tools usable without specialized training
- Packaged generic Grid services:
  - Domain management and DAML-based policy analysis
  - ◆ Task, process, and event management
- Involvement of more countries and organizations
  - ◆ USA BBN Mixed initiative agents & dynamic information flow
  - ◆ Australia DSTO Logistics planning and information analysis
  - ◆ Canada DREV Domain models






## **Course of Events**

- Part 1: Agadez submarine attack agents alert appropriate HQs.
- ◆ Part 2: Casualty data collected by agents and used to effect timely medevac.
- ◆ Part 3: A new country, Arabello, joins the Coalition 'on-the-fly' - integrated by agent technologies.
- ◆ Part 4: Arabello's ASW sensor grid data fused with Coalition - translator agents generated on-demand.
- ◆ Part 5: Agent-mediated tasking countermeasures deployed based on predicted locations.







































































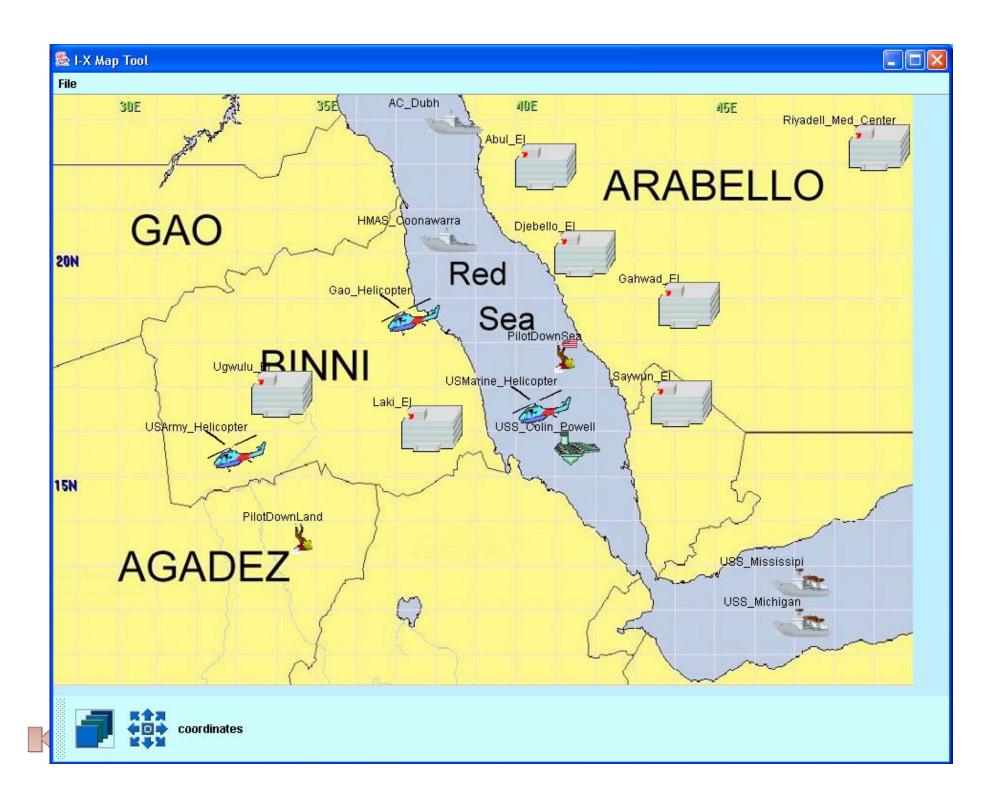
## **CoAX Technology Contributions**

- AlAl's I-X Task, Process and Event Panel Technology
- BBN Technologies MPS Mixed-Initiative Planning and Interaction Agents, Dynamic Agent Information Coordination Protocols, Airlift Mission Planning System Agent.
- CMU's Retsina Grid Agent Communications Visualisation and DAML-S Matchmaker.
   See here for more details.
- DSTO's Future Operations Centre Analysis Laboratory (FOCAL) and Logistics Planning using the ATTITUDE multi-agent architecture.
- Dartmouth College's Field-observation System and Mobile Agents for Medical Monitoring
- GITI/ISX CoABS Program Grid Infrastructure
- Lockheed Martin ATL's EMAA mobile agent technology, CAST information management agents, and I2AT agent development toolkit
- Michigan's Multilevel Coordination Agent
- MIT's Robustness Service
- NRL's Intelligent Agents for GCCS-M
- OBJS's eGents E-mail Agents and AgentGram
- QinetiQ's Decision Desktop and Master Battle Planner
- Stanford's Market Mechanisms Technology
- UMD's IMPACT agents for reasoning with probabilistic temporal information
- UTexas at Austin's Sensible Agent technology Trust Evaluation and Organization Adaptation
- USC/ISI's Ariadne Project
- UWF/IHMC and Boeing's KAoS Technology
- UWF/IHMC NOMADS Technology





## Coalition Search and Rescue - Task Support


Intelligent Task Achieving Agents on the Semantic Web

Austin Tate & Jeff Dalton
AIAI, Informatics, University of Edinburgh

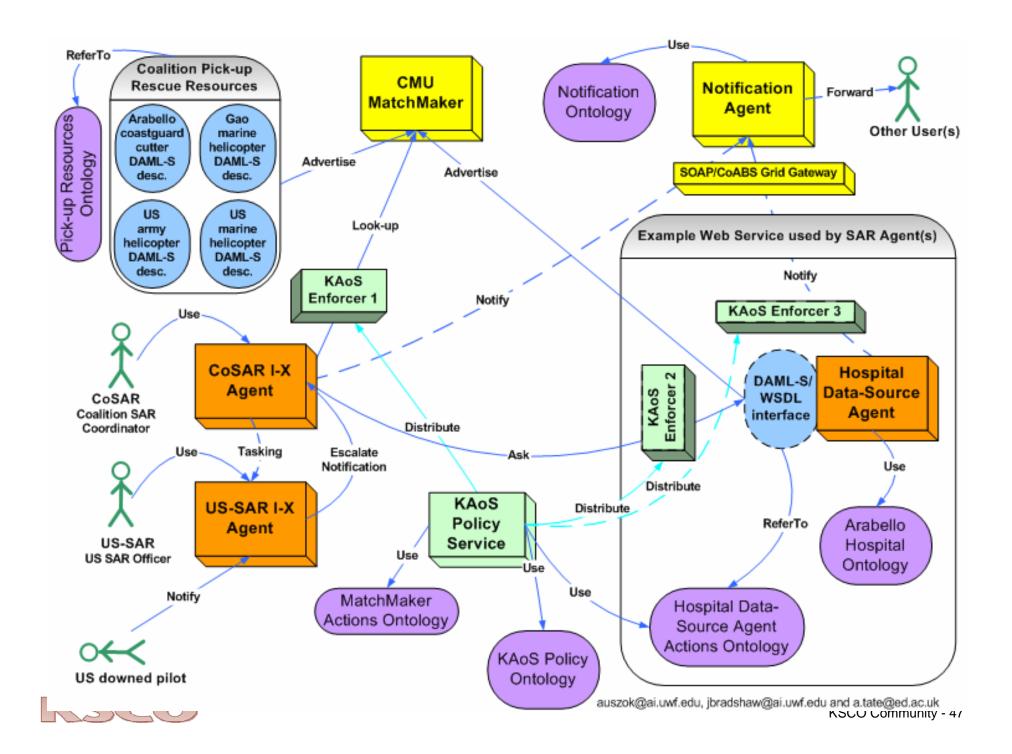
Jeff Bradshaw & Andrzej Uszok IHMC, Pensacola, FL





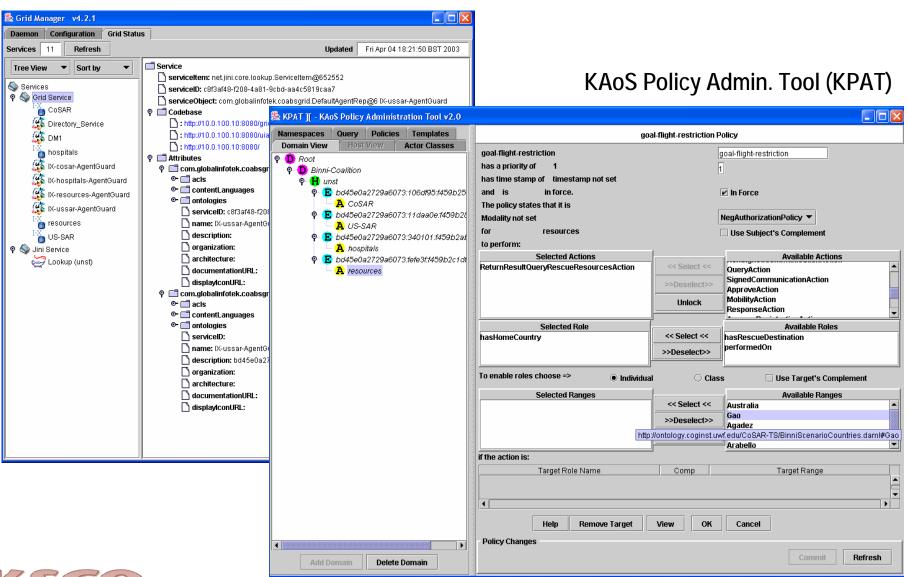


# **Project Summery**


- To provide capabilities linking:
  - models of organizational structures, policies, and doctrines
  - with intelligent task support software
- ◆ The project integrates:
  - AIAI's I-X planning and collaboration technology
  - ♦ IHMC's KAoS policy and domain services
  - Semantic Web Services of various kinds
- Search and rescue operations <u>rapid dynamic composition of</u> <u>available policy-constrained services</u> - good use case for Semantic Web
- Other participants in the application include: BBN Technologies, SPAWAR, AFRL, and CMU

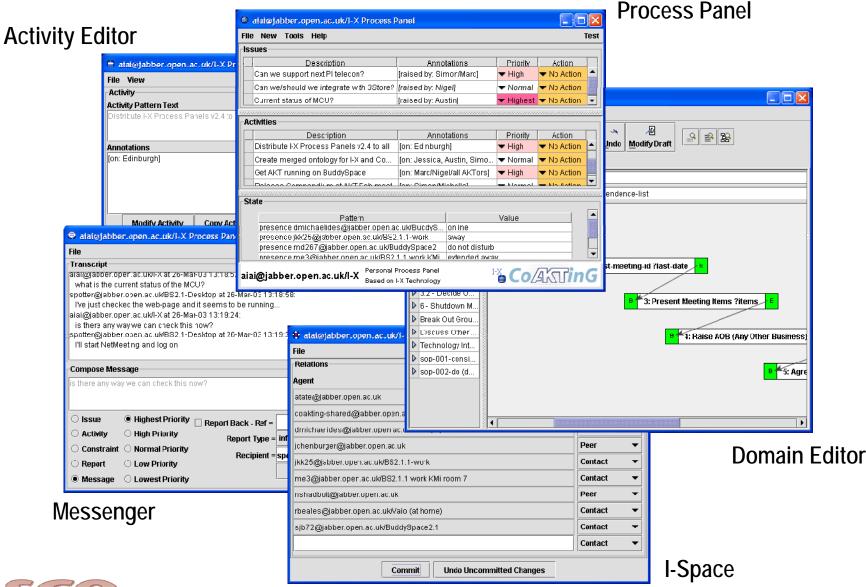


## **CoSAR-TS Scenario**


- Based on the scenario from the CoAX (Coalition Agents experiment) project.
- Follows on from events of Binni 2002
- The story begins with an event that reports a downed airman in the Red Sea
- Rescue resources (transportation, medical, notification) represented as dynamic Semantic Web Services
  - Description based on ontology developed for the DARPA SONAT experiment
- The selection of a SAR resource is made using the CMU Semantic Matchmaker (Sycara) to find a suitable service
- Intelligent Notification done through CMU agents (Sadeh)
- ◆ These lookups comply with KAoS policies

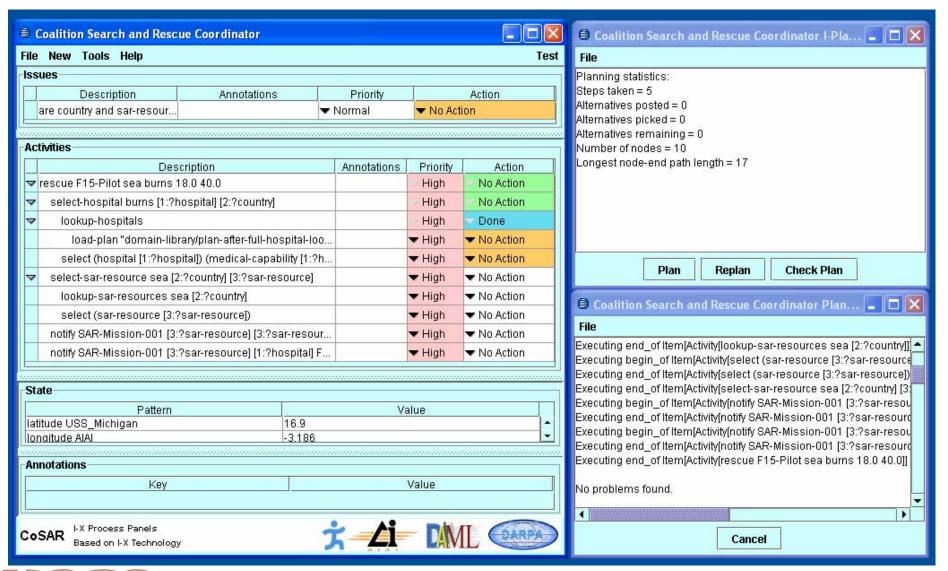





#### **KAoS Domain & Policy Management Tools**

#### **CoABS Grid Manager**






#### I-X Task Support Tools





#### **I-Plan Tool**





## **CoSAR-TS Results**

- Initial Coalition SAR scenario defined
- SONAT ENP data base extended with Binni data
- Direct DAML file processing from I-X to SONAT via HP JENA Toolkit
- SOAP Access to SAR Resources from KAoS and I-X via Katia Sycara's CMU MatchMaker and MM client code
- I-X linked to Norman Sadeh's CMU context-aware Notification Agent for personalised notifications
- ♦ KAoS policy-governed access to SAR Resources
- Initial demonstration framework with CoSAR and US-SAR I-X Panels and 2 Information Access Agents
- Integration of BBN OpenMap with I-X Process Panels





# KSCO Further Information and Involvement

- ♦ KSCO, Binni, CoAX materials and documentation:
  - ♦ http://binni.org
  - http://www.aiai.ed.ac.uk/project/ksco/
  - http://www.aiai.ed.ac.uk/project/coax/
- ♦ We encourage your participation...
  - In addressing key coalition and technical drivers
  - ♦ In seeking operational opportunities
  - In future demonstrations



